Pacific Journal of Mathematics

Generalized monoform and quasi injective modules.

John Dauns

Article information

Source
Pacific J. Math., Volume 66, Number 1 (1976), 49-65.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102818217

Mathematical Reviews number (MathSciNet)
MR0439889

Zentralblatt MATH identifier
0349.16011

Subjects
Primary: 16A52
Secondary: 18E40: Torsion theories, radicals [See also 13D30, 16S90]

Citation

Dauns, John. Generalized monoform and quasi injective modules. Pacific J. Math. 66 (1976), no. 1, 49--65. https://projecteuclid.org/euclid.pjm/1102818217


Export citation

References

  • [1] J. A. Beachy, Generating and cogenerating structures, Trans. Amer. Math. So, 158 (1971), 75-92.
  • [2] J. A. Beachy, A generalization of injectivity, Pacific J. Math., 41 (1972), 313-327.
  • [3] J. Dauns, Simple modules and centralizers, Trans. Amer. Math. Soc, 166 (1972), 457-477.
  • [4] J. Dauns, One sided prime ideals, Pacific J. Math., 47 (1973), 401-412.
  • [5] L. Fuchs, On quasi-infective modules, Annali della Scuola Normale Superiore di Pisa Classe di Scienze, 23 (1969), 541-546.
  • [6] R. Gordon and J. C. Robson, Krull dimension, Amer. Math. Soc, Memoir No. 133.
  • [7] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc, 36 (1961), 260-268.
  • [8] K. Koh, Quasi-simple modules and other topics in ring theory, Tulane Ring Year Lecture Notes, Lecture Notes in Mathematics No. 246, Springer (1972), New York.
  • [9] K. Koh and A. Mewborn, A class of prime rings, Canad. Math. Bull., 9 (1966), 63-72.
  • [10] J. Lambek, Lectures on Modules and Rings, Blaisdell, Waltham, Mass., 1966.
  • [11] J. Lambek, Torsion Theories, Additive Semantics, and Rings of Quotients, Springer Verlag, Berlin, 1971.
  • [12] J. Lambek, Bicommutators of nice injectives, J. Algebra, 21 (1972), 60-73.
  • [13] J. Lambek, Localization and completion, J. Pure and Appl. Algebra, 2 (1972), 343-370.
  • [14] J. Lambek, Localization at epimorphisms and quasi-injectives, to appear.
  • [15] H. Storrer, On Goldman's primary decomposition, Tulane Ring Year Lecture Notes, Lecture Notes in Mathematics No. 246, Springer (1972), New York.
  • [16] C. L. Walker and E. A. Walker, Quotient categories and rings of quotients, Rocky Mountain J. Math., 2 (1972), 513-555.