Pacific Journal of Mathematics

Rings whose additive subgroups are subrings.

John D. O'Neill

Article information

Source
Pacific J. Math., Volume 66, Number 2 (1976), 509-522.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102818024

Mathematical Reviews number (MathSciNet)
MR0460380

Zentralblatt MATH identifier
0358.16016

Subjects
Primary: 16A48

Citation

O'Neill, John D. Rings whose additive subgroups are subrings. Pacific J. Math. 66 (1976), no. 2, 509--522. https://projecteuclid.org/euclid.pjm/1102818024


Export citation

References

  • [1] R. A. Beaumont, Rings with additive group which is the direct sum of cyclic groups,Duke Math. J., 15 (1948), 367-369.
  • [2] R. A. Beaumont and R. S. Pierce, Torsion-free rings, Illinois J. Math., 5 (1961), 61-98.
  • [3] L. Fuchs, Abelian Groups, Publ. House Hungar. Acad. Science, Budapest, 1958.
  • [4] L. Fuchs, Infinite Abelian Groups, Academic Press, N. Y., Vol. I (1970), Vol. II (1973).
  • [5] L. Redei, Die Vollidealringe, Monatshefte fur Mathematik, 56 (1952), 89-95.