Pacific Journal of Mathematics

Spaces with bases satisfying certain order and intersection properties.

W. F. Lindgren and P. J. Nyikos

Article information

Source
Pacific J. Math., Volume 66, Number 2 (1976), 455-476.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102818020

Mathematical Reviews number (MathSciNet)
MR0445452

Zentralblatt MATH identifier
0354.54016

Subjects
Primary: 54D20: Noncompact covering properties (paracompact, Lindelöf, etc.)

Citation

Lindgren, W. F.; Nyikos, P. J. Spaces with bases satisfying certain order and intersection properties. Pacific J. Math. 66 (1976), no. 2, 455--476. https://projecteuclid.org/euclid.pjm/1102818020


Export citation

References

  • [1] P. S. Alexandroff, On the metzation of topological spaces, Bull. Acad. Polon. Math. Ser., 8 (1960), 135-140 (Russian).
  • [2] A. V. Arhangel'skii and V. V. Filippov, Spaces with bases of finite rank, Math USSR Sbornik, 16 (1972), 147-158.
  • [3] R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
  • [4] G. Birkhoff, Lattice Theory, 3rd ed., Providence, Amer. Math. Soc, 1967.
  • [5] J. R. Boone, A characterization of metacompactness in the class of -refinable spaces, General Topology Appl., 3 (1973), 253-264.
  • [6] M. M. Coban, Spaces with bases of rank one, Bull. Akad. RSS Moldovenest, 3 (1973), 12-19,91 (Russian).
  • [7] R. P. Dilworth, A decomposition theorem for partially ordered sets, Annals of Math., 51 (1950), 161-16
  • [8] R. Engelking, Outline of General Topology, Amsterdam, North Holland, 1968.
  • [9] P. Fletcher and W. F. Lindgren, Orthocompactness and strong Cech completeness in Moore spaces, Duke Math J., 39 (1972), 753-766.
  • [10] P. Fletcher and W. F. Lindgren, Locally quasi-uniform spaces with countable bases, Duke. Math. J., 41 (1974),231-240.
  • [11] P. Fletcher and W. F. Lindgren, Transitive quasi-uniformities, J. Math. Anal. Appl., 39 (1972), 397-405.
  • [12] L. Gillma and M. Jerison, Rings of Continuous Functions, Princeton, Van Nostrand, 1960.
  • [13] G. Gruenhage, A note on quasi-metrizability (preprint).
  • [14] G. Gruenhage and P. Nyikos, Spaces with bases of countable rank, (to appear).
  • [15] R. W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math., 12 (1962), 1301-1319.
  • [16] R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J., 39 (1972), 253-263.
  • [17] R. E. Hodel, Moore spaces and w-spaces, Pacific J. Math., 38 (1971), 641-652.
  • [18] R. E. Hodel, Metrizability of topological spaces, Pacific J. Math., 55 (1974), 441-459.
  • [19] I. Juhasz, Cardinal Functions in Topology, Mathematical Centre Tracts No. 34, Math. Centrum, Amsterdam, 1971.
  • [20] Ya. A. Kofner, On -metrizable spaces, Math. Notes Acad Sci. USSR, 13 (1973), 168-174.
  • [21] D. J. Lutzer, On quasi-uniform bases, Proceedings of the University of Oklahoma Topology Conference, Norman, Oklahoma, 1972.
  • [22] E. Michael, The product of a normal space and a metc space need not be normal, Bull. Amer. Math. Soc, 69 (1963), 375-376.
  • [23] J. Nagata, On dimension and metrization, General Topology and its Relations to Modem Analysis and Algebra, New York, Academic Press, 1962.
  • [24] J. Nagata, Modern General Topology, Amsterdam, North Holland, 1968.
  • [25] P. Nyikos, Some surprising base properties in topology, Studies in Topology, New York, Academic Press, 1975.
  • [26] P. Nyikos and H.-C. Reichel, On the structure of zero-dimensional spaces, Indag. Math., 37 (1975), 120-136. 27^On uniform spaces with linearly ordered bases II (^-metc spaces), Fund. Math.,93 (1977), 1-10.
  • [28] P. Nyikos and H.-C. Reichel, Non-archimedean spaces and some generalizations, (in preparation).
  • [29] H. Ribeiro, Sur les espaces a metrique faibile, Portugaliae Math., 4 (1943), 21-40.
  • [30] B. Scott, Toward a product theory for orthocompactness, Studies in Topology, New York, Academic Press, 1975.
  • [31] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad., 44 (1968), 623-627.
  • [32] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc, 53 (1947), 631-632.
  • [33] L. A. Steen and J. A. Seebach, Counterexamples in topology, New York, Holt, Rinehart, and Winston, 1970.
  • [34] J. Vaughan, Linearly ordered collections and paracompactedness, Amer. Math. Soc. Proceed- ings, 24 (1970), 186-192.
  • [35] H. H. Wicke and J. M. Worrell, Characterizations of developable topological spaces, Canad. J. Math., 17 (1965), 820-830.
  • [36] H. H. Wicke and J. M. Worrell, Topological completeness of first countable Hausdorff spaces I, Fund. Math., 75 (1972), 209-222.