Pacific Journal of Mathematics

On fixed points of zero index in asymptotic fixed point theory.

Christian C. Fenske and Heinz-Otto Peitgen

Article information

Source
Pacific J. Math., Volume 66, Number 2 (1976), 391-410.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102818016

Mathematical Reviews number (MathSciNet)
MR0488034

Zentralblatt MATH identifier
0344.55006

Subjects
Primary: 55C20

Citation

Fenske, Christian C.; Peitgen, Heinz-Otto. On fixed points of zero index in asymptotic fixed point theory. Pacific J. Math. 66 (1976), no. 2, 391--410. https://projecteuclid.org/euclid.pjm/1102818016


Export citation

References

  • [1] C. Bowszyc, Fixed point theorems for the pairs of spaces, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 16 (1968), 845-850.
  • [2] F. E. Browder, Another generalization of the Schauder fixed point theorem, Duke Math. J., 32 (1965), 399-406.
  • [3] F. E. Browder, A further generalization of the Schauder fixed point theorem, Duke Math. J., 32 (1965), 575-578.
  • [4] F. E. Browder, Asymptotic fixed point theorems, Math. Ann., 185 (1970), 38-60.
  • [5] R. F. Brown, Notes on Leray's index theory, Advances in Math., 7 (1971), 1-28.
  • [6] C. C. Fenske, H. O. Peitgen, Repulsive fixed points of multivalued transformations and the fixed point index, Math. Ann., 218 (1975), 9-18.
  • [7] G. Fournier, Generalisations du theoreme de Lefschetz pour des espaces non-compacts I, II,HI, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., 23 (1975),693-711.
  • [8] A. Granas, The heray-Schauder index and the fixed point theory for arbitrary ANR's, Bull.Soc. math. France, 100 (1972), 209-228.
  • [9] V. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc, 78 (1955), 30-45.
  • [10] J. Leray, Thorie des points fixes: indice total et nombre de Lefschetz, Bull. Soc. math. France, 87 (1959), 221-233.
  • [11] J. Leray, Sur la position d'un ensemble ferme de points d'un espace topologique, J. Math. Pures Appl., 24 (1945), 169-199.
  • [12] R. D. Nussbaum, Asymptotic fixed point theorems, Math. Ann., 185 (1970), 38-60.
  • [13] R. D. Nussbaum, Some asymptotic fixed point theorems, Trans. Amer. Math. Soc, 171 (1972), 349-375.
  • [14] R. D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations II,J. Differential Equations, 14 (1973), 360-394.
  • [15] R. D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations, Ann. Mat. Pura Appl., 101 (1974), 263-306.
  • [16] R. D. Nussbaum, A global bifurcation theorem with applications to functional differential equations, J. Functional Analysis, 19 (1975), 319-338.
  • [17] H. O. Peitgen, Asymptotic fixed point theorems and stability, J. Math. Anal. Appl., 47 (1974), 32-42.
  • [18] H. O. Peitgen, On theLefschetz number for iterates of continuous mappings, Proc. Amer. Math. Soc, 54 (1976), 441-444.
  • [19] H. O. Peitgen,Some applications ofthe fixed point index inasymptotic fixed point theory,Proc.Conf. on Fixed Point Theory and its Applications, Halifax 1975, ed.: Academic Press N.Y. 1976. f
  • [20] H.Steinlein, EinSatz iiber denLeray-Schauderschenbbildungsgrad, Math. Z., 120(1972), 176-208.
  • [21] H.Steinlein, Uber die verallgemeinerten Fixpunktindizes von Iterierten verdichtender Abbildungen, manuscripta math., 8 (1972), 251-266.
  • [22] H.Steinlein, A newproof of the (mod p)-theorem in asymptotic fixed point theory, Proc. Conf.on Problems in Nonlinear Functional Analysis, Bonn 1974, ed.: Ber. Ges. Math. Datenverarb. Bonn, 103 (1975), 29-42.
  • [23] P.P.Zabreko, M. A. Krasnoseskif, Iterations of operators andthe fixed point index, Doklady Akad. Nauk SSSR 196(1971), 1006-1009. =Soviet Math. Dokl., 12 (1971), 294-298.