Pacific Journal of Mathematics

Unbounded completely positive linear maps on $C^*$-algebras.

David E. Evans

Article information

Source
Pacific J. Math., Volume 66, Number 2 (1976), 325-346.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102818013

Mathematical Reviews number (MathSciNet)
MR0445297

Zentralblatt MATH identifier
0399.46044

Subjects
Primary: 46L05: General theory of $C^*$-algebras

Citation

Evans, David E. Unbounded completely positive linear maps on $C^*$-algebras. Pacific J. Math. 66 (1976), no. 2, 325--346. https://projecteuclid.org/euclid.pjm/1102818013


Export citation

References

  • [1] W. B. Arveson, Subalgebras of C*-algebras I, Acta Math., 123(1969), 141-224.
  • [2] M.D.Choi, Private communication.
  • [3] F.Combes, Poids sur une C*-algebre, J. Math. Pure et Appl., 47 (1968), 57-100.
  • [4] F.Combes, Surlesfaces d'une C*-algebre, Bull. Sc.Math., 2e serie, 93 (1969), 37-62.
  • [5] F.Combes, Poids associe a unealgebre hilbertienne a gauche, Compositio Mathematica,23(1971), 49-77.
  • [6] F.Combes, Poids et esperances conditionelles dans lesalgebres de vonNeumann, Bull. Soc. Math. France, 99 (1971), 73-112.
  • [7] F.Combes and F. Perdrizet, Ideaux dans lesespaces vectoriels ordonnes, J.Math. Pures et Appl., 49 (1970), 29-59.
  • [8] J.Dixmier, LesC*-algebres etleurs representations, 2nd edition, GauthierVillars, Paris (1969).
  • [9] U.Haagerup, Operator valued weights invonNeumann algebras, Preprint,University of Odense (1975).
  • [10] W.L.Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc, 182 (1973), 443-468.
  • [11] R. T. Powers, Self adjoint algebras of unbounded operators, Comm. Math. Phys., 11 (1971), 85-124.
  • [12] R. T. Powers, Self adjoint algebras of unbounded operators II, Trans. Amer. Math. Soc, 187 (1974), 261-293.
  • [13] M. A. Rieffel, Induced representations of C*-algebras, Adv. in Math., 13 (1974), 176-257.
  • [14] S. Sakai, C*-algebras and W*-algebras, Ergebn. d. Math., 60, Springer Verlag, Berlin (1971).
  • [15] A. van Daele, The upper envelope of invariant functionals majorised by an invariant weight, Pacific J. Math., 49 (1973), 283-301.