Pacific Journal of Mathematics

Equations of mean curvature type in $2$ independent variables.

Leon Simon

Article information

Source
Pacific J. Math., Volume 69, Number 1 (1977), 245-268.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102817107

Mathematical Reviews number (MathSciNet)
MR0454854

Zentralblatt MATH identifier
0354.35040

Subjects
Primary: 49F10
Secondary: 35J20: Variational methods for second-order elliptic equations

Citation

Simon, Leon. Equations of mean curvature type in $2$ independent variables. Pacific J. Math. 69 (1977), no. 1, 245--268. https://projecteuclid.org/euclid.pjm/1102817107


Export citation

References

  • [1] L. Bers, Isolated singularitiesof minimal surfaces, Ann. of Math., (2) 53 (1951), 364-386.
  • [2] R. Finn, Equations of minimal surface type, Annals of Math., 60 (1954), 397-416. 3# yIsolated singularitiesof solutions of non-linear partial differential equa- tions, Trans. Amer. Math. Soc, 75 (1953), 383-404.
  • [4] E. Heinz, Tiber die L'sungender Minimal dchengeleichung,Nachr. Akad. Wiss. Gttingen Math. Phy. Kl, II (1952), 51-56.
  • [5] H. Jenkins, On 2-dimensional variational problems in parametric form, Arch.Rat. Mech. Anal., 8 (1961), 181-206.
  • [6] H. Jenkins, J. Serrin, Variational problems of minimal surface type I, Arch. Rat. Mech. Anal., 12 (1963), 185-212.
  • [7] C. B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag.
  • [8] L. Simon, A Holder estimate for quasiconformal maps between surfaces in Euclidean space. To appear in Acta Math.
  • [9] L. Simon, Isolated singularitiesof graphs with quasiconformal Gauss map.Inpre- paration.
  • [10] L. Simon, Global estimates of Holder continuityfor a class ofdivergence-form elliptic equations, Arch. Rat. Mech. Anal., 56 (1974), 253-272.
  • [11] J. Spruck, Gauss curvature estimates forsurfaces of constant meancurvature, Comm. Pure Appl. Math., 27 (1974).