Pacific Journal of Mathematics

A bounded operator approach to Tomita-Takesaki theory.

Marc A. Rieffel and Alfons van Daele

Article information

Pacific J. Math., Volume 69, Number 1 (1977), 187-221.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L10: General theory of von Neumann algebras


Rieffel, Marc A.; van Daele, Alfons. A bounded operator approach to Tomita-Takesaki theory. Pacific J. Math. 69 (1977), no. 1, 187--221.

Export citation


  • [1] H. Araki, Some properties of modular conjugationoperator of von Neumann alge- bras and a non-commutativeRadon-Nikodymtheorem with a chain rule, Pacific J. Math., 50 (1974), 309-354.
  • [2] F. Combes, Poid associe a une algebre Hilbertiennea gauche, Comp. Math., 23 (1971), 49-77.
  • [3] A. Connes, Une classification des facteurs de type III. Ann. Scient Ec. Norm. Sup., 6 (1973), 133-252.
  • [4] J. Dixmier, Positions relative de deux varietes lineaires fermees dans un espace de Hilbert, Rev. Sci., 86 (1948), 387-399. 5# fjes algebres d'operateures dans Vespace hilbertien, 2nd ed.Gauthier-Villars, Paris, 1969
  • [6] J.-P. Eckmann and K. Osterwalder, An application of Tomit's theory of modular Hilbert algebras: Duality for free Bose fields, J. Functional Analysis, 13 (1973), 1-12.
  • [7] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc, 144 (1969), 381-389.
  • [8] R. Herman, Perturbationsof the modular automorphism group, Comm. Math. Phys., 28 (1972), 237-243.
  • [9] M. A. Rieffel, A commutationtheorem and duality for free Bose fields, Comm. Math. Phys., 39 (1974), 153-164.
  • [10] M. A. Rieffel and A. Van Daele, The commutation theorem for tensor products of von Neumann algebras, Bull. London Math. Soc, 7 (1975), 257-260.
  • [11] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
  • [12] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
  • [13] M. Takesaki, Tomita's theory of modular Hilbert algebras and itsapplications, Springer Lecture Notes no. 128, Berlin-Heidelberg-New York, 1970.
  • [14] M. Takesaki,States and automorphismsof operator algebras. Standardrepresenta- tions and the Kubo-Martin-SchwingerBoundary Condition.In Statistical Mechanics and Mathematical Problems, Lecture Notes in Physics no. 20, Springer-Verlag, Berlin- Heidelberg-New York, 1973.
  • [15] M. Takesaki, Duality forcrossed products and the structure of vonNeumann algebras of type III, Acta Math., 131 (1973), 249-310.
  • [16] M. Tomita, Standard forms of von Neumann algebras, The Vth functional analysis symposium of the Mathematical Society of Japan, Sendai (1967).
  • [17] M. Tomita, Quasi-standard von Neumann algebras, Mimeographed notes, 1967.
  • [18] A. Van Daele, A new approach to the Tomita-Takesakitheory of generalized Hilbert algebras, J. Functional Analysis, 15 (1974), 378-393.
  • [19] A. Van Daele, The Tomita-Takesaki theory for von Neumann algebras with a separat- ing and cyclic vector, Proceedings of the Varenna conference (1973) on C*-algebras and their applications to statistical mechanics and quantum field theory. To appear.
  • [20] M. Winnink, Algebraic aspects of the Kubo-Martin-Schwingercondition, Cargese Lectures in Physics, vol. 4, Gordon and Breach, New York-London-Paris, 1970.
  • [21] S. L. Woronowicz, On the purificationof factor states, Comm. Math. Phys., 28 (1972), 221-235.
  • [22] L. Zsid, A proof of Tomita1s fundamentaltheorem in the theory of standard von Neumann algebras, preprint.