Pacific Journal of Mathematics

On composite $n$ for which $\varphi(n)\mid n-1$. II.

Carl Pomerance

Article information

Source
Pacific J. Math., Volume 69, Number 1 (1977), 177-186.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102817104

Mathematical Reviews number (MathSciNet)
MR0434938

Zentralblatt MATH identifier
0342.10005

Subjects
Primary: 10A20

Citation

Pomerance, Carl. On composite $n$ for which $\varphi(n)\mid n-1$. II. Pacific J. Math. 69 (1977), no. 1, 177--186. https://projecteuclid.org/euclid.pjm/1102817104


Export citation

References

  • [1] W. Borho, Eine Schranke fur befreundete Zahlen mit gegebener Tellerunzahl, Math. Nachr., 63 (1974), 297-301.
  • [2] P. Erds, On pseudoprimes and Carmichaelnumbers, Publ. Math. Debrecen, 4 (1956), 201-206.
  • [3] O. Grn, Uber ungerade vollkommene Zahlen, Math. Z., 55 (1952), 353-354.
  • [4] G. H. Hardy and E. M. Wright, An Introductionto the Theory ofNumbers (Fourth Edition), Oxford, 1960.
  • [5] M. Kishore, On the equation k(M) = M - 1, Not. Amer. Math. Soc, 22 (1975), A-501-A-502.
  • [6] D. H. Lehmer, On Euler'stotient function,Bull. Amer. Math. Soc, 38 (1932), 745-757.
  • [7] E. Lieuwens, Do there exist composite numbers M for which k(M)= M --1 holds! Nieuw Arch. Wisk., (3), 18 (1970), 165-169.
  • [8] H. G. Meijer, Sets of primes with intermediatedensity,Math. Scand., 34 (1974), 37-43.
  • [9] K. K. Norton, Remarks on the number of factors of an odd perfect number, Acta Arith., 6 (1961), 365-374.
  • [10] C. Pomerance, On the congruences (n) = (mod n) and n = (mod (n)), Acta Arith., 26 (1975), 265-272.
  • [11] C. Pomerance, On composite n forwhich (n)\n --1, Acta Arith., 28 (1976), 387-389.
  • [12] W. Sierpiski, ElementaryTheory of Numbers, Warsaw, 1964.
  • [13] D. Suryanarayana, On odd perfect numbers, Math. Student, 41 (1973), 153-154.

See also

  • Carl Pomerance. On composite {$n$} for which {$\varphi (n)n-1$}. I [MR 52 #13608] Acta Arith. 28 1975/76 4 387--389.