Pacific Journal of Mathematics

Measure algebras of semilattices with finite breadth.

J. D. Lawson, J. R. Liukkonen, and M. W. Mislove

Article information

Pacific J. Math., Volume 69, Number 1 (1977), 125-139.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 43A10: Measure algebras on groups, semigroups, etc.
Secondary: 22A20: Analysis on topological semigroups


Lawson, J. D.; Liukkonen, J. R.; Mislove, M. W. Measure algebras of semilattices with finite breadth. Pacific J. Math. 69 (1977), no. 1, 125--139.

Export citation


  • [1] A. Baartz, The measure algebra of a locally compact semigroup, Pacific J. Math., 21 (1967), 199-214.
  • [2] K. H. Hofmann and M. Mislove, Epics of compact Lawson semilattices are surjec- tive, Archiv der Math., 26 (1975), 337-345.
  • [3] K. H. Hofmann, M. Mislove, and A.R. Stralka, The Pontryagin dualityof com- pact ^-dimensionalsemilattices and its applications,Lecture Notes in Mathematics 396, Springer-Verlag, Heidelberg, 1974.
  • [4] K. H. Hofmann and P. Mostert, Elements of Compact Semigroups, Merrill, Colum- bus, Ohio, 1966.
  • [5] K. H. Hofmann and A. Stralka, The algebraic theory of compact Lawson semilat- tices, Dissertationes Math., 137 (1976), 53 pp.
  • [6] J. D. Lawson, Topological semilattices small with semilattices, J. London Math. Soc, 1 (1969), 719-724.
  • [7] J. D. Lawson,Intrinsictopologies in topological lattices and semilattices, Pacific J. Math., 44(1973), 593-102.
  • [8] J. D. Lawson, Additional notes on continuity in semitopological semigroups. Semigroup Forum, to appear.
  • [9] S. E. Newman, Measure algebras on idempotent semigroups, Pacific J. Math., 31 (1969), 161-169.
  • [10] J. L. Taylor, Measure Algebras, CBMS Regional Conference Series in Mathema- tics 16, A. M. S., Providence, 1972.