Pacific Journal of Mathematics

Certain hypotheses concerning $L$-functions.

John B. Friedlander

Article information

Source
Pacific J. Math., Volume 69, Number 1 (1977), 37-44.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102817093

Mathematical Reviews number (MathSciNet)
MR0434986

Zentralblatt MATH identifier
0347.10032

Subjects
Primary: 10H10

Citation

Friedlander, John B. Certain hypotheses concerning $L$-functions. Pacific J. Math. 69 (1977), no. 1, 37--44. https://projecteuclid.org/euclid.pjm/1102817093


Export citation

References

  • [1] N. C. Ankeny, The least quadratic nonresidne, Annals of Math., 55 (1952), 65-72.
  • [2] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Proc. Kon. Ned. Akad. Wetens A, 53 (1950), 803-812.
  • [3] N. G. de Bruijn, On the number of integers ^ X and free from primes> Y, Proc. Kon. Ned. Akad. Wetens. A, 54 (1951), 50-60.
  • [4] P. D. T. A. Elliott, A note on a recent result of U.V. Linnik and A.I. Vinogradov, Acta Arith., XIII (1967), 103-105.
  • [5] B. V. Levin and A. S. Fainleib, Application of some integral equations to problems of number theory,Russian Math. Surveys (22), 3 (1967), 119-204.
  • [6] Yu V. Linnik and A. Renyi, On certain hypotheses in the theory ofDirichlet characters, Izv. Akad. Nauk. SSSR Ser. Mat., 11 (1947) 539-546.
  • [7] A. I. Vinogradov and Yu. V. Linnik, Hyperellipticcurves and the least prime quadratic residue, Dokl. Akad. Nauk. SSSR, 168 (1966), 259-261.
  • [8] J. E. Littlewood, On the class number of the corpus P(V--K), Proc. London Math. Soc, (2) 27 (1927), 358-372.
  • [9] K. A. Rodosskii, On nonresidues and zeros of L-functions,Izv. Akad. Nauk. SSSR. Ser. Mat., 20 (1956), 303-306.
  • [10] E. C. Titchmarsh, The Theory of the Riemann Z'eta-function, Oxford, 1951.
  • [11] D. Wolke, A note on the least prime quadratic residue (mod p), Acta Arith., XVI (1969), 85-87.