Pacific Journal of Mathematics

Normal congruence subgroups of the Hecke groups $G(2^{(1/2)})$ and $G(3^{(1/2)})$.

L. Alayne Parson

Article information

Source
Pacific J. Math., Volume 70, Number 2 (1977), 481-487.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102811933

Mathematical Reviews number (MathSciNet)
MR0491507

Zentralblatt MATH identifier
0375.10014

Subjects
Primary: 10D05
Secondary: 20H10: Fuchsian groups and their generalizations [See also 11F06, 22E40, 30F35, 32Nxx]

Citation

Parson, L. Alayne. Normal congruence subgroups of the Hecke groups $G(2^{(1/2)})$ and $G(3^{(1/2)})$. Pacific J. Math. 70 (1977), no. 2, 481--487. https://projecteuclid.org/euclid.pjm/1102811933


Export citation

References

  • [1] E. Hecke, Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann., 112 (1936), 664-699.
  • [2] J. I. Hutchinson, On a class of automorphic functions, Trans. Amer. Math. Soc, 3 (1902), 1-11.
  • [3] M. I. Knopp, Determination of certain roots of unity in the theory of automorphic forms of dimension zero, Duke Math. J., 27 (1960), 497-506.
  • [4] D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math., 87 (1965), 285-296.
  • [5] M. Newman, Normal congruence subgroups of the modular group, Amer. J. Math., 85 (1963), 419-427.
  • [6] M. F. Newman and J. R. Smart, Modulary groups of t x t matrices, Duke Math. J., 30 (1963), 253-257.
  • [7] L. A. Parson, Generalized Kloosterman sums and the Fourier coefficients of cusp forms, Trans. Amer. Math. Soc, 217 (1976), 329-350.
  • [8] K. Wohlfahrt, An extension of F. Klein's level concept, Illinois J. Math., 8 (1964), 529-535.
  • [9] J. Young, On the group belonging to the sign (0,3; 2,4, c) and the functions belonging to it, Trans. Amer. Math. Soc, 5 (1904), 81-104.