Pacific Journal of Mathematics

Essential spectrum $\Gamma (\beta)$ of a dual action on a von Neumann algebra.

Yoshiomi Nakagami

Article information

Source
Pacific J. Math., Volume 70, Number 2 (1977), 437-479.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102811932

Mathematical Reviews number (MathSciNet)
MR0500192

Zentralblatt MATH identifier
0371.46026

Subjects
Primary: 46L10: General theory of von Neumann algebras
Secondary: 22D35: Duality theorems

Citation

Nakagami, Yoshiomi. Essential spectrum $\Gamma (\beta)$ of a dual action on a von Neumann algebra. Pacific J. Math. 70 (1977), no. 2, 437--479. https://projecteuclid.org/euclid.pjm/1102811932


Export citation

References

  • [1] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a noncommutative Radon-Nikodymtheorem with a chain rule, Pacific J. Math., 50 (1974),309-354.
  • [2] H. Araki, Structure of some von Neumann algebras with isolated discrete modular spectrum, Publ. RIMS, Kyoto Univ., 9 (1973), 1-14.
  • [3] W. B. Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis, 15 (1974), 217-243.
  • [4] M. Choda, Normal expectations and crossed products of von Neumann algebras, Proc. Japan Acad., 50 (1974), 738-742.
  • [5] A. Connes, Une classification des facteurs de type III, Ann. Sci. Ecole Norm. Sup., 6 (1973), 133-252.
  • [6] A. Connes and M. Takesaki, The flow of weights on factors of type III, Thoku Math. J., to appear.
  • [7] T. Digerness, Dual weight and the commutation theorem for crossed products of W*-algebras, Preprint, CNRS, Marseille, 1974.
  • [8] P. Eymard, L'algebre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
  • [9] U.Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271T283.
  • [10] U.Haagerup, On the dual weights for crossed products of von Neumann algebras I, II, Preprints, Odense Univ., 1975.
  • [11] U.Haagerup, Operator valued weights in von Neumann algebras, Preprint, Odense Univ., 1975.
  • [12] Y. Haga, Crossed products of von Neumann algebras by compact groups, Thoku Math. J., 28 (1976), 511-522.
  • [13] Y. Haga and Z. Takeda, Correspondence between subgroups and subalgebras in a cross product von Neumann algebra, Thoku Math. J., 24 (1972), 167-190.
  • [14] A. Ikunishi and Y. Nakagami, Oninvariants G() and()foranautomorphism group ofa von Neumann algebra, Publ. RIMS, Kyoto Univ., 12(1976),1-30.
  • [15] M. B. Landstad, Duality theory for covaant systems, Preprint, Univ. of Trondheim, 1974.
  • [16] M. B. Landstad, Duality for dual covariance algebras, Commun. Math. Phys., 52(1977), 191-202.
  • [17] Y. Nakagami, Dual action on a vonNeumann algebra andTakesaki's duality for a locally compact group, Publ. RIMS, Kyoto Univ. 12(1977), 727-775.
  • [18] M.Nakamura and Z.Takeda, On some elementary properties of thecrossed product ofvon Neumann algebras, Proc. Japan Acad., 34(1958), 489-494.
  • [19] M.Nakamura and Z.Takeda, A Galois theory forfinite factors, Proc. Japan Acad., 36(1960), 258-260.
  • [20] J.E.Roberts, Cross products of von Neumann algebras bygroup duals, Inst. Nationale di Alta Mat. Symposia Math., 20 (1976).
  • [21] S.Stratila, D. Voiculescu and L. Zsid, Oncrossedproducts, Rev. Roumaine Math., 21 (1976), 1411-1449; 22 (1977), 83-117.
  • [22] M. Takesaki, Covariance representations of C*-algebras and their locally compact automorphism groups, Acta Math., 119 (1967), 273-303.
  • [23] M. Takesaki,Duality forcrossedproducts and the structure ofvon Neumann algebras oftype 111, Acta Math., 131 (1971), 249-310.
  • [24] M. Takesaki and N. Tatsuuma, Duality andsubgroups, Ann. of Math., 93(1971), 344-364.
  • [25] J.Tomiyama, Tensor products and projections of norm oneinvonNeumann algebras, Lecture Note at Univ. of Copenhagen. 1970.