Pacific Journal of Mathematics

Unbounded representations of $\ast$-algebras.

S. Gudder and W. Scruggs

Article information

Source
Pacific J. Math., Volume 70, Number 2 (1977), 369-382.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102811924

Mathematical Reviews number (MathSciNet)
MR0482269

Zentralblatt MATH identifier
0374.46045

Subjects
Primary: 46L99: None of the above, but in this section

Citation

Gudder, S.; Scruggs, W. Unbounded representations of $\ast$-algebras. Pacific J. Math. 70 (1977), no. 2, 369--382. https://projecteuclid.org/euclid.pjm/1102811924


Export citation

References

  • [1] H.J. Borchers and J. Yngvason, On the algebra of field operators.The weak commutant and integral decomposition of states, Commun. Math. Phys. 42 (1975), 231-252.
  • [2] G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, John Wiley & Sons, Inc., New York (1972).
  • [3] G. Lassner, Topological algebras of operators, Rep. Math. Phys., 3 (1972), 279-293.
  • [4] M.A. Naimark, Normed Rings, Noordhoff Publishers, Groningen, The Netherlands (1970).
  • [5] E. Nelson, Analytic vectors, Ann. Math., 70 (1959), 572-615.
  • [6] R.T. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.
  • [7] R.T. Powers, Self-adjoint algebras of unbounded operators II, Trans. Amer. Math. Soc, 187 (1974), 1-33.
  • [8] W.M. Scruggs, Unbounded representations of ^-algebras, Dissertation, University of Denver (1976).
  • [9] B. Simon, The P()2 Euclidean (Quantum) Field Theory, Princeton University Press, Prince- ton, New Jersey (1974).
  • [10] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That, W.A. Benjamin, Inc., New York (1964).