Pacific Journal of Mathematics

Curvature functions on Lorentz $2$-manifolds.

John T. Burns

Article information

Source
Pacific J. Math., Volume 70, Number 2 (1977), 325-335.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102811918

Mathematical Reviews number (MathSciNet)
MR0514851

Zentralblatt MATH identifier
0373.53022

Subjects
Primary: 53C50: Lorentz manifolds, manifolds with indefinite metrics
Secondary: 35L60: Nonlinear first-order hyperbolic equations 58G99

Citation

Burns, John T. Curvature functions on Lorentz $2$-manifolds. Pacific J. Math. 70 (1977), no. 2, 325--335. https://projecteuclid.org/euclid.pjm/1102811918


Export citation

References

  • [1] N. I. Ahiezer, The Calculus of Variations, Translated from the Russian by Aline H. Frink, Blaisdell Publishing Co., New York-London, 1962.
  • [2] Melvyn S. Berger, On Riemannianstructures of prescribed Gauss curvature for compact two-dimensional manifolds, J. Differential Geometry, 5 (1971), 325-332.
  • [3] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, New Jersey, 1949.
  • [4] P.Garabedian,Partial Differential Equations, JohnWiley&Sons,Inc.,New York-London-Sydney,1964.
  • [5] E. Goursat, Lecons sur integration des equations aux derivees partielles du second ordre,Tome I, Hermann, Paris, 1896.
  • [6] D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrieim Grossen, Lecture Notes in Mathematics No. 55, Springer-Verlag, Berlin-New York, 1968.
  • [7] J. Kazdan, and F. Warner, Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 14-47.
  • [8] J. Kazdan, Curvature functions for open 2-manifolds, Ann. of Math., 99 (1974), 203-219.
  • [9] H. Wittich, Ganze Lsungen der Differentialgleichung u = eu, Math. Z., 49 (1944), 579-582.