Pacific Journal of Mathematics

Topics in harmonic analysis on solvable algebraic groups.

Roger E. Howe

Article information

Source
Pacific J. Math., Volume 73, Number 2 (1977), 383-435.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102810617

Mathematical Reviews number (MathSciNet)
MR0480858

Zentralblatt MATH identifier
0394.43009

Subjects
Primary: 22E25: Nilpotent and solvable Lie groups
Secondary: 22D10: Unitary representations of locally compact groups 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]

Citation

Howe, Roger E. Topics in harmonic analysis on solvable algebraic groups. Pacific J. Math. 73 (1977), no. 2, 383--435. https://projecteuclid.org/euclid.pjm/1102810617


Export citation

References

  • [1] L. Auslander and J. Brezin, Invariant subspace theory for three-dimensionalnilmani- folds, B.A.M.S., 78 (1972), 254-258.
  • [2] J. Brezin, Mackey's little group method and L2 of compact homogeneous spaces, in Harmonic Analysis on Homogeneous Spaces, Proc. Symp. in Pure Math., vol. XXVI, Amer. Math. Soc, Providence, Rhode Island, 1973.
  • [3] L. Auslander and B. Kostant, Quantizationand representationsof solvable Lie groups, Bull. Amer. Math. Soc, 73 (1967), 692-695.
  • [4] L. Auslander and B. Kostant, Polarization and unitaryrepresentations of solvable Lie groups, Inven- tiones Math., 14 (1971), 255-354.
  • [5] L. Auslander and C. C. Moore, Unitary representations of solvableLie groups, Mem. of Amer. Math. Soc, 62 (1966).
  • [6] P. Bernat, Sur les representations unitaires des groupes de Lie resolubles, Ann. de L. N.S.. 82 (1965), 37-99.
  • [7] R. Blattner, On induced representations, Amer. J. Math., 83 (1961), 79-98.
  • [8] A. Borel, Linear algebraic groups, Proc. Symp. in Pure Math. vol. IX, Amer. Math. Soc, Providence, Rhode Island, (1966), 3-19.
  • [9] A. Borel and J. Tits, Groups reductifs, Pub. I.H.E.S., 27 (1965), 55-150.
  • [10] J. Brezin, Unitary representation theory for solvable Lie Groups, Mem. of Amer. Math. Soc, 79 (1968).
  • [11] F. Bruhat, Sur les representations induitesdes groupes de Lie, Bull, de la Soc Math, de France, 84 (1956), 97-205.
  • [12] C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
  • [13] J. M. C Fell, The dual space of C* algebras, T. A. M. S., 94 (1960), 365-403.
  • [14] R, Godement, Groupes lineaires algebriques sur un corps parfait, Sem. Bourbaki, exp 206, (1961).
  • [15] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Grundlehren der Math. Wis- senschaften, 115, Springer-Verlag, Berlin, 1963.
  • [16] R Howe, Frobenius reciprocity for unipotent algebraic groups over Q, Amer. J. Math., 93 (1971), 163-172
  • [17] R Howe, The Fourier transform on nilpotent locally compact groups, I, Pacific J. Math., 73 (1977), 307-327.
  • [18] R. Howe, Kirillov theory for compact p-adic groups, Pacific J. Math., 73 (1977), 365-381.
  • [19] R. Howe, On the character of Weil's representation, Trans. Amer. Math. Soc, 177 (1973), 287-298.
  • [20] H. Jacquet and R. P. Langlands, AutomorphicForms on Gh, Springer Lecture Notes 114, Springer-Verlag, New York, (1970).
  • [21] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Matem. Nauk, 106 (1962), 57-110.
  • [22] R. P. Langlands, Dimensions of spaces of automorphic forms, Proc. Symp. in Pure Math., vol. IX, Amer. Math. Soc, Providence, Rhode Island, (1966), 253-257.
  • [23] G. W. Mackey, The Theory of Group Representations, mimeographed notes, U. of Chicago, 1955.
  • [24] C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., 82 (1965), 146-182.
  • [25] C. C. Moore, Plancherel formula for non-unimodulargroups, Maryland Conference in Harmonic Analysis 1971, Springer Lecture Notes 266.
  • [26] G. D. Mostow, Factor spaces of solvable groups, Ann. of Math., 60 (1954), 1-27.
  • [27] G. D. Mostow, Representative functionson discrete groups and solvable arithmetic groups, Amer. J. Math., 92 (1970), 1-31.
  • [28] Pontryagin, Topological Groups.
  • [29] L. Pukanszky, On the characters and Plancherel formula of nilpotent groups, J. Functional Analysis, 1 (1967), 255-280.
  • [30] L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. Ec. Norm. Sup., 4 (1971), 457-608. 31.1Lecons sur les representations des groupes, Dunod, Paris, (1966).
  • [32] L. Pukanszky, On the theory of exponential groups, T. A. M. S., 126 (1967), 487-507.
  • [33] L. Pukanszky, Characters of algebraic solvable groups, J. Functional Analysis, 3 (1969), 435-494.
  • [34] L. Richardson, Decomposition of the U -space of a general compactnilmanifold, Amer. J. Math., 93 (1971), 173-189.
  • [35] A. Weil, Vintegrationdans les groupes topologiques et ses applications, Actualites Sci. et Ind. 1145, Hermann et Cie., Paris, 1951.
  • [36] A. Weil, Sur certains groupes d'operateurs unitaires,Acta Math., I l l (1964), 143-211. 37.1Basic Number Theory, Springer-Verlag, New York, 1969.