Pacific Journal of Mathematics

The Fourier transform for nilpotent locally compact groups. I.

Roger E. Howe

Article information

Source
Pacific J. Math., Volume 73, Number 2 (1977), 307-327.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102810614

Mathematical Reviews number (MathSciNet)
MR0492059

Zentralblatt MATH identifier
0396.43013

Subjects
Primary: 22D12: Other representations of locally compact groups

Citation

Howe, Roger E. The Fourier transform for nilpotent locally compact groups. I. Pacific J. Math. 73 (1977), no. 2, 307--327. https://projecteuclid.org/euclid.pjm/1102810614


Export citation

References

  • [1] L. Auslander et al, Flows on homogeneous spaces, Ann. of Math. Studies, no. 53, Princeton Univ. Press, 1963.
  • [2] J. M. G. Fell, The dual spaces of C*-algebras, T. A. M.S., 94 (1960), 365-403.
  • [3] M. Hall, The Theory of Groups, The Macmillan Co., 1959.
  • [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis,Springer-Verlag, 1963.
  • [5] R. Howe, On representations of discrete, finitely generated, torsion-free,nilpotent
  • [6] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi. Matem. Nauk., 106 (1962), 57-110.
  • [7] G. W. Mackey, Theory of group representations,University of Chicago, mimeo- graphed notes, 1955.
  • [8] C. C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math., 82 (1965), 146-182.
  • [9] G. Schiffmann, Distributions centrales de type positif sur un groupe de Lie nilpotent, Bull. Soc. Math, de France, 96 (1968), 347-355.
  • [10] J. P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, Inc., 1965. 11.1Cohomologie galoisienne, Lecture Notes in Math., 5, Springer-Verlag, 1965.
  • [12] A. Weil, Basic Number Theory, Springer-Verlag, New York, 1967.