Pacific Journal of Mathematics

The Fourier-Stieltjes algebra of a topological semigroup with involution.

Anthony To Ming Lau

Article information

Source
Pacific J. Math., Volume 77, Number 1 (1978), 165-181.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806645

Mathematical Reviews number (MathSciNet)
MR507628

Zentralblatt MATH identifier
0426.43006

Subjects
Primary: 43A15: $L^p$-spaces and other function spaces on groups, semigroups, etc.
Secondary: 46L05: General theory of $C^*$-algebras

Citation

Lau, Anthony To Ming. The Fourier-Stieltjes algebra of a topological semigroup with involution. Pacific J. Math. 77 (1978), no. 1, 165--181. https://projecteuclid.org/euclid.pjm/1102806645


Export citation

References

  • [1] R. F. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc, 2 (1951), 839-848.
  • [2] W. Arverson, An Invitationto C*-algebras,Springer-Verlag, 1976.
  • [3] C. Berg and J. P. R. Christensen, Positive definite functions on abelian semigroups, Math. Ann., 223 (1976), 253-272.
  • [4] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973.
  • [5] C. F. Dunkl and D. E. Ramirez, ^-representationsof commutativesemitopological semigroups, Semigroup Forum, 7 (1974), 180-199.
  • [6] C. F. Dunkl and D. E. Ramirez, Representations of commutativesemitopological semigroups, Lecture notes in Mathematics, 435 (1975), Springer-Verlag.
  • [7] C. F. Dunkl and D. E. Ramirez, Locally compact subgroups of the spectrum of the measure algebra, Semi- group Forum, 3 (1971), 95-107.
  • [8] J. Ernest, Hopf-von Neuman Algebras, in "Proc. Conference Functional Analysis (Irvine, Calif., 1966)". Academic Press, New York 1967, 195-215.
  • [9] J. Ernest,A new group algebra for locally compact groups I, Amer. J. Math., 8G (1964), 467-492.
  • [10] P. Eymard, Ulgebre de Fourier d'un groupe localement compact, Bull. Soc. Math., France, 92 (1964), 181-236.
  • [11] I. Glicksberg, Weak compactness and separate continuity,Pacific J. Math., 11 (1961), 205-214.
  • [12] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1963.
  • [13] R. V. Kadison, Isometries of operator algebras, Ann. of Math., 54 (1951), 325-338.
  • [14] A. Lau, Analysis on a class of Banach algebras with applications toharmonic analysis on locally compact groups andsemigroups.
  • [15] R. J. Lindahl and P. H. Maserick, Positive definite functionson involution semi- groups, Duke Math. J., 38 (1971), 771-782.
  • [16] S. Sakai, C*-algebrasand W*~algebras, Springer-Verlag, 1971.
  • [17] E. Strmer, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc, 120 (1965), 438-447.
  • [18] M. E. Walter, W*-algebras and nonabelian harmonic analysis, J. Functional Analysis, 11 (1972), 17-38.
  • [19] M. E. Walter,On the structure of the Fourier-Stieltjes algebra, Pacific J. Math., 58 (1975), 267-281.