Pacific Journal of Mathematics

The typeset and cotypeset of a rank $2$ abelian group.

Phillip Schultz

Article information

Source
Pacific J. Math., Volume 78, Number 2 (1978), 503-517.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806145

Mathematical Reviews number (MathSciNet)
MR519768

Zentralblatt MATH identifier
0392.20036

Subjects
Primary: 20K15: Torsion-free groups, finite rank

Citation

Schultz, Phillip. The typeset and cotypeset of a rank $2$ abelian group. Pacific J. Math. 78 (1978), no. 2, 503--517. https://projecteuclid.org/euclid.pjm/1102806145


Export citation

References

  • [1] R. A. Beaumont and R. S. Pierce, Torsion-free groups of rank two, Mem. Amer. Math. Soc, 38 (1961).
  • [2] D. W. Dubois, Applications of analytic number theory to the study of type sets of torsion-free Abelian groups I, Pub. Math., 12 (1965), 59-63.
  • [3] D. W. Dubois, Applications of analytic number theory to the study of type sets of torsion- free Abelian groups II, Pub. Math., 13 (1966), 1-8.
  • [4] L. Fuchs, Infinite Abelian Groups, Vol. I and II, Academic Press, New York and London, 1970, 1973.
  • [5] R. Ito, On type-sets of torsion-free Abelian groups of rank 2, Proc. Amer. Math. Soc, 48, 1 (1975), 39-42.
  • [6] J. Koehler, Some torsion-free rank two groups, Acta Sci. Math., 25, 1-2 (1964), 186-190.
  • [7] P. Schultz, Torsion-free extensions of torsion-free Abelian groups, J. Algebra, 3O (1974), 75-91.

See also

  • : Phillip Schultz. Correction to: ``The typeset and cotypeset of a rank $2$ abelian group''. Pacific Journal of Mathematics volume 97, issue 2, (1981), pp. 486-486.