Pacific Journal of Mathematics

Invariants of integral representations.

Irving Reiner

Article information

Source
Pacific J. Math., Volume 78, Number 2 (1978), 467-501.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806144

Mathematical Reviews number (MathSciNet)
MR519767

Zentralblatt MATH identifier
0392.20005

Subjects
Primary: 20C10: Integral representations of finite groups

Citation

Reiner, Irving. Invariants of integral representations. Pacific J. Math. 78 (1978), no. 2, 467--501. https://projecteuclid.org/euclid.pjm/1102806144


Export citation

References

  • [1] S. D. Berman and P. M. Gudivok, Indecomposable representations of finite groups over the ring of p-adic integers, Izv. Akad. Nauk, SSSR Ser. Mat., 28 (1964), 875-910; English transl., Amer. Math. Soc. Transl. (2) 50 (1966), 77-113.
  • [2] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
  • [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.
  • [4] C. W. Curtis and I. Reiner, Representation theory of finite groups and associa- tive algebras, Pure and Appl. Math., vol. XI, Interscience, New York, 1962; 2nd ed., 1966.
  • [5] F. E. Diederichsen, Uber die AusreduktionganzzahligerGruppendarstellungen bei arithmetischer Aquivalenz, Abh. Math. Sem. Univ. Hamburg, 13 (1940), 357-412.
  • [6] S. Galovich, The class group of a cyclic p-group, J. Algebra, 30 (1974), 368-387.
  • [7] A. Heller and I. Reiner, Representations of cyclic groups in rings of integers.I. II, Ann. of Math., (2) 76 (1962), 73-92; (2) 77 (1963), 318-328.
  • [8] H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math., 121 (1968), 1-29.
  • [9] M. A. Kervaire and M. P. Murthy, On the protective class group of cyclic groups of prime power order, Comment. Math. Helvetici, 52 (1977), 415-452.
  • [10] I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc, 8 (1957), 142-146.
  • [10a] I. Reiner, A survey of integral representation theory, Bull. Amer. Math. Soc, 76 (1970), 159-227.
  • [11] I. Reiner, Maximal Orders, Academic Press, London, 1975.
  • [12] I. Reiner, Integral representations of cyclic groups of order p2, Proc Amer. Math. Soc, 58 (1976), 8-12. 13.1Indecomposable integral representations of cyclic p-groups, Proc Philidel- phia Conference 1976, Dekker Lecture Notes 37 (1977), 425-445.
  • [14] A. V. Roiter, On representations of the cyclic group of fourth order by integral matrices, Vestnik Leningrad. Univ., 15 (1960), no. 19, 65-74. (Russian)
  • [15] A. V. Roiter,On integral representationsbelonging to a genus, Izv. Akad. Nauk, SSSR, Ser. Mat., 30 (1966), 1315-1324; English transl. Amer. Math. Soc Transl. (2)71 (1968), 49-59.
  • [16] J. J. Rotman, Notes on homological algebra, van Nostrand Reinhold, New York, 1970.
  • [17] A. Troy, Integral representationsof cyclic groups of order p2, Ph. D. Thesis, University of Illinois, Urbana, IL., 1961.
  • [18] S. Ullom, Fine structure of class groups of cyclic p-groups, J. Algebra, 48 (1977).
  • [19] S. Ullom,Class groups of cyclotomic fields and group rings, J. London Math. Soc, (to appear).