Pacific Journal of Mathematics

The evolution of bounded linear functionals with application to invariant means.

H. Kharaghani

Article information

Source
Pacific J. Math., Volume 78, Number 2 (1978), 369-374.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806136

Mathematical Reviews number (MathSciNet)
MR519759

Zentralblatt MATH identifier
0394.43001

Subjects
Primary: 43A07: Means on groups, semigroups, etc.; amenable groups
Secondary: 22A20: Analysis on topological semigroups

Citation

Kharaghani, H. The evolution of bounded linear functionals with application to invariant means. Pacific J. Math. 78 (1978), no. 2, 369--374. https://projecteuclid.org/euclid.pjm/1102806136


Export citation

References

  • [1] R. B. Burckel, Weakly Almost Periodic Functions on Semigroups, Gordon and Breach, New York, 1970.
  • [2] M. M. Day, Amenable semigroups, Illinois J. Math., 1 (1957), 509-544.
  • [3] I. Glicksberg, Weak compactness and separate continuity,Pacific J. Math., 11 (1961), 205-214.
  • [4] E. Granirer, On Baire measure on D-topological spaces, Fund. Math., 60 (1967), 1-22.
  • [5] F. P. Greenleaf, Invariantmeans on topological groups and theirapplications, Van Nostrand, Princeton, N. J., 1969.
  • [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I. Springer Verlag, Berlin- Gottingen-Heidelberg, 1963.
  • [7] A. Hulanicki, Means and Folner condition on locally compact groups, StudiaMath., 27 (1966), 87-104.
  • [8] H. Kharaghani, Left thick subsets of a topological semigroup, Illinois J. Math., 22 (1978), 41-48.
  • [9] P. Milnes, Compactification of semitopological semigroups, J. of Aust. Math. Soc,
  • [10] I. Namioka, On a recent theorem by Reiter, Proc. Amer. Math. Soc, 17 (1966), 1101-1102.
  • [11] J. S. Pym, The convolution of linear functionals,Proc. London Math. Soc, (3), 14 (1964), 431-444.
  • [12] J. S. Pym, The convolution of functionalson spaces of bounded functions,Proc. London Math. Soc, (3), 15 (1965), 84-104.
  • [13] W. Rudin, FunctionalAnalysis, Tata McGraw-Hill, New Delhi, 1974.