Pacific Journal of Mathematics

Normal expectations and integral decomposition of type ${\rm III}$ von Neumann algebras.

Herbert Halpern

Article information

Source
Pacific J. Math., Volume 78, Number 2 (1978), 291-331.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102806131

Mathematical Reviews number (MathSciNet)
MR519754

Zentralblatt MATH identifier
0393.46051

Subjects
Primary: 46L10: General theory of von Neumann algebras

Citation

Halpern, Herbert. Normal expectations and integral decomposition of type ${\rm III}$ von Neumann algebras. Pacific J. Math. 78 (1978), no. 2, 291--331. https://projecteuclid.org/euclid.pjm/1102806131


Export citation

References

  • [1] W. Arveson, Analyticityin operator algebras, Amer. J. Math., 89 (1967), 578-642.
  • [2] W. Arveson, Subalgebras of C*-algebras,Acta Math., 123 (1970), 141-224.
  • [3] F. Combes, Poids associe a une algebre Hilberiienne a gauche, Comp. Math., 23 (1971), 49-77.
  • [4] A. Connes, Une classification de facteurs de type III, Ann.Sci. Ecole. Norm. Sup., (4) 6 (1973), 133-252.
  • [5] J. Dixmier, Lesalgebres d'operateurs dans espace Hilbertien, Gauthier-Villars, Paris (1969). # fLQSC*-algebreset leurs representations, Gauthier-Villars, Paris, (1964).
  • [7] A. Gleason, Protective topological spaces, Illinois J. Math., 2 (1958), 482-489.
  • [8] J. Glimm, A Stone-Weierstrasstheorem for C*-algebras,Ann.of Math., 72 (1960), 216-244.
  • [9] A. Guichardet, D. Kastler, Disintegration des etats quasi-invariantsdes C*-algebres, J. Math. Pures Appl., 49 (1970), 349-380.
  • [10] H. Halpern, An integral representation of a normal functionalon a von Neumann algebra, Trans. Amer. Math. Soc, 125 (1966), 32-46.
  • [11] H. Halpern, Integral decomposition of functionals on C*-algebras,Trans. Amer. Math. Soc, 168 (1972), 371-385.
  • [12] M. Hasumi, The extension property of complex Banach spaces, Thoku Math. J., 10 (1958), 135-142.
  • [13] E. Hille, R. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publications, Vol. XXXI, Providence (1957).
  • [14] J.-P. Jurzak, Poids strictement semi-finis et groupe d}automorphismesmodulaires sur une algebres de von Neumanndecomposable, C.R. Acad. Sci. Paris, 279 (1974), 24-224.
  • [15] J.-P. Jurzak, Decomposable operators. Applications to K.M.S. weights in a decompo- sable von Neumann algebra, Rep.Mathematical Phys., 8 (1975), 203-228.
  • [16] R. Kadison, Irreducible operator algebras, Proc. Mat.Acad. Sci. USA, 43 (1957), 273-276.
  • [17] R. Kallman, A generalization of free action, Duke Math. J., 36 (1970), 781-789.
  • [18] A deKorvin, Normal expectations in von Neumann algebras, Pacific J. Math., 27 (1968), 333-338.
  • [19] C. Lance, Direct integrals of left Hilbert algebras, Math. Ann., 216 (1975), 11-28.
  • [20] C. Lance, Refinement of direct integral decompositions, Bull. London Math. Soc, 8 (1976), 49-56.
  • [21] L. Loomis, An Introductionto Abstract Harmonic Analysis, van Nostrand, New York (1953).
  • [22] G.K. Pedersen and M. Takesaki, The Radon-Nikodyn theorem forvonNeumann algebras, Acta Math., 130 (1973), 53-87.
  • [23] R. R. Phelps, Lectures on Choquet's Theorem, von Nostrand Mathematical Studies, no. 7, New York, (1966).
  • [24] C.E. Rickart, Banach Algebras, van Nostrand, New York, (1960).
  • [25] F. Riesz, B. Sz.-Nagy, Functional Analysis, Ungar, New York, (1955).
  • [26] S. Sakai, On the central decomposition forpositive functionalson C*-algebras, Trans. Amer. Math. Soc, 118 (1965), 406-419.
  • [27] S. Sakai, On a problem of Calkin, Amer, J. Math., 88 (1966), 935-941.
  • [28] S. Sakai, On a characterization of Type I C*~algebras, Bull. Amer. Math. Soc, 72 (1966), 508-512.
  • [29] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin, (1971).
  • [30] F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc, 6 (1955), 211-216.
  • [31] S. Stratila, L. Zsid, An algebraic reduction theory for W*-algebras, I, J.Functional Anal., 11 (1972), 295-313.
  • [32] S. Stratila, An algebraic reduction theory forW*-algebras, II, Rev. Roum. Math, Pures et Appl., 18 (1973), 407-460.
  • [33] C. Sutherland, Direct integral theory for weights, and the Plancherelformula, Queen's Mathematics Preprint no. 1974-6.
  • [34] M. Takesaki, Tomita'sTheory of ModularHilbert Algebras, Lecture notes in Mathematics no. 128, Springer-Verlag, Berlin, (1920).
  • [35] M. Takesaki,Conditional expectations in von Neumann algebras, J. Functional Anal., 9 (1972), 306-321.
  • [36] M. Takesaki,Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.
  • [37] S. Telleman, Sur la reductions des algebres de von Neumann, C.R. Acad. Sci. Paris, 280 (1975), 1685-1688.
  • [38] J. Tomiyama, On the projections of norm one in W*-algebras, Proc. Japan Acad., 33 (1957), 608-612.
  • [39] J. Tomiyama, On the projections of norm one in W*-algebras II, Tkoku Math. J., 10 (1958), 204-209.
  • [40] J. Tomiyama, On the projections of norm one in W*-algebrasIII, Thoku Math. J., 11 (1959), 125-129.
  • [41] J. Tomiyama,On the product projection of norm one in the direct product of operator algebras, Thoku Math. J., 11 (1959), 305-313.
  • [42] J. Vesterstrom and W. Wils, Direct integrals of Hilbert spaces II, Math. Scand., 26 (1970), 73-88.
  • [43] W.Wils, Direct integral of Hilbert spaces I, Math. Scand., 2 (1970), 89-102.
  • [44] W.Wils,esintegration central des formes positives sur les C*-alge~bres, C.R. Acad. Sci. Paris, 267 (1968), 810-812.
  • [45] W.Wils,The ideal center of partiallyordered vector spaces, Acta. Math., 127 (1971), 41-77.