Pacific Journal of Mathematics

Combinatorial geometry and actions of compact Lie groups.

Tor Skjelbred

Article information

Source
Pacific J. Math., Volume 79, Number 1 (1978), 197-205.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102805998

Mathematical Reviews number (MathSciNet)
MR526679

Zentralblatt MATH identifier
0409.57040

Subjects
Primary: 57S15: Compact Lie groups of differentiable transformations

Citation

Skjelbred, Tor. Combinatorial geometry and actions of compact Lie groups. Pacific J. Math. 79 (1978), no. 1, 197--205. https://projecteuclid.org/euclid.pjm/1102805998


Export citation

References

  • [1] C. Allday and T. Skjelbred, The Borel formula fortorus actions on a Poincare duality space, Ann. of Math., 100 (1974), 322-325.
  • [2] A. Borel et. al., Seminar on TransformationGroups, Ann. of Math. Studies, No.
  • [46] Princeton U. Press, Princeton, I960.
  • [3] G. Bredon, Fixed point sets of actions on Poincare duality spaces, Topology, 12 (1973), 159-175.
  • [4] G. Bredon,The freepart of a torus action and related numericalequalities, Duke Math. J., 41 (1974), 843-854.
  • [5] T. Chang and T. Skjelbred, Group actions on Poincare duality spaces, Bull. Amer. Math. Soc, 78 (1972), 1024-1026.
  • [6] T. Chang and T. Skjelbred, The topological Schur lemma and related results, Ann. of Math., 100 (1974), 307-321.
  • [7] T. Chang and T. Skjelbred, Lie group actions on a Cayley protective plane and orientable homogene- ous spaces of prime Euler characteristic, Amer. J. Math., 98 (1976), 655-678.
  • [8] B. Elstad, unpublished note.
  • [9] D. Golber, Torus actions on a product of two odd spheres, Topology, 10 (1971), 313-326.
  • [10] Hadwiger und Debrunner, Kombinatorische Geometrie der Ebene.
  • [11] S. Hansen, A generalization of a theorem of Sylvester, Math. Scand., 16 (1965), 175-180.
  • [12] W. Y. Hsiang, On the SplittingPrinciple and the Geometric Weight System of Topological TransformationGroups, I, Springer Lecture Notes in Mathematics, 298 (1972), 334-402.
  • [13] W. Y. Hsiang,Cohomology Theory of Topological TransformationGroups, Ergebnisse der Mathematik Band 85, Springer Verlag, 1975.
  • [14] T. Motzkin, The lines and planes connecting the points of a finite set, Trans. Amer. Math. Soc, 70 (1951), 451-464.
  • [15] T. Skjelbred, Torus actions on manifoldsand affine dependence relations, Mimeo- graphed, 1975, IHES, 91 Bures-sur-Yvette, France.
  • [16] Sylvester, Educational Times, 59 (1893), 98.