Pacific Journal of Mathematics

The space of ANRs of a closed surface.

Laurence Boxer

Article information

Source
Pacific J. Math., Volume 79, Number 1 (1978), 47-68.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102805985

Mathematical Reviews number (MathSciNet)
MR526666

Zentralblatt MATH identifier
0397.57008

Subjects
Primary: 54C55: Absolute neighborhood extensor, absolute extensor, absolute neighborhood retract (ANR), absolute retract spaces (general properties) [See also 55M15]
Secondary: 57N99: None of the above, but in this section

Citation

Boxer, Laurence. The space of ANRs of a closed surface. Pacific J. Math. 79 (1978), no. 1, 47--68. https://projecteuclid.org/euclid.pjm/1102805985


Export citation

References

  • [1] B. J. Ball and Jo Ford, Spaces of ANR's, Fund. Math., 77 (1972), 33-49.
  • [2] B. J. Ball and Jo Ford, Spaces of ANR's. II, Fund. Math., 78 (1973), 209-216.
  • [3] K. Borsuk, On some metrizations of the hyperspace of compact sets, Fund. Math., 41 (1954), 168-202.
  • [4] K. Borsuk,Theory of Retracts, Polish Scientific Publishers, Warsaw, 1967.
  • [5] L. Boxer, The Space of Absolute Neighborhood Retracts of a ClosedSurface, Ph. D. Thesis, University of Illinois, 1976.
  • [6] M. M. Cohen, A Course in Simple-HomotopyTheory, Springer-Verlag, New York, 1973.
  • [7] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
  • [8] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), 83- 107.
  • [9] O. Hanner, Some theorems on absolute neighborhood retracts, Arkiv for Matematik, 1 (1951), 389-408.
  • [10] A. G. Kurosh, The Theory of Groups, vol. II, Chelsea, New York, 1956.
  • [11] N. R. Wagner, A continuityproperty with applications to the topology of 2- manifolds,Trans. Amer. Math. Soc, 200 (1974), 369-393.
  • [12] J. H. C. Whitehead, On the homotopy type of ANR's, Bull., Amer. Math. Soc, 54 (1948), 1113-1145,
  • [13] G. T. Whyburn, AnalyticTopology, Amer. Math. Soc, Providence, 1942.