Pacific Journal of Mathematics

Projective modules over subrings of $k[X,\,Y]$ generated by monomials.

David F. Anderson

Article information

Source
Pacific J. Math., Volume 79, Number 1 (1978), 5-17.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102805982

Mathematical Reviews number (MathSciNet)
MR526663

Zentralblatt MATH identifier
0372.13006

Subjects
Primary: 13D15: Grothendieck groups, $K$-theory [See also 14C35, 18F30, 19Axx, 19D50]
Secondary: 14F05: Sheaves, derived categories of sheaves and related constructions [See also 14H60, 14J60, 18F20, 32Lxx, 46M20]

Citation

Anderson, David F. Projective modules over subrings of $k[X,\,Y]$ generated by monomials. Pacific J. Math. 79 (1978), no. 1, 5--17. https://projecteuclid.org/euclid.pjm/1102805982


Export citation

References

  • [1] D. F. Anderson, Projective modules over subrings of k[X, Y], dissertation, University of Chicago, 1976.
  • [2] D. F. Anderson, Subrings of k\X, Y] generated by monomials, Canad. J. Math., 3O(1978), 215-224.
  • [3] D. F. Anderson, Projective modules over subrings of k[X, Y], Trans. Amer. Math. Soc, 240 (1978), 317-328.
  • [4] H. Bass, Algebraic K-theory, W. A. Benjamin, New York, 1968. 5# fBig projective modules are free, Illinois J. Math., 7 (1963), 24-31. g fLiberation des modules projectifssur certains anneaux de polynomes, Sem. Bourbaki, 448 (1973-74). 7_ fTorsion free and projective modules, Trans. Amer. Math. Soc, 1O2(1962), 319-327.
  • [8] Y. Hinohara, Projective modules over weakly noetherian ringsy J. Math. Soc. Japan, 15 (1963), 75-88.
  • [9] H. Matsumura, Commutative Algebra, W. A. Benjamin, New York, 1970.
  • [10] J. Milnor, Introduction to Algebraic K-theory, Princeton University Press, Princeton, 1971.
  • [11] M. P. Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math., 89 (1969),242-253.
  • [12] M. P. Murthy and C. Pedrini, Ko and K of polynomial rings,in Algebraic K- theory II, Springer Lecture Notes in Mathematics, No. 342, Berlin, 1973, 109-121.
  • [13] M. P. Murthy and R. G. Swan, Vector bundles over affine surfaces,Inventiones Math., 36 (1976),125-165.
  • [14] C. Pedrini, On the Ko of certain polynomial extensions, in Algebraic K-theory II, Springer Lecture Notes in Mathematics, No. 342, Berlin, 1973, 92-108.
  • [15] D. Quillen, Projective modules over polynomial rings, Inventiones Math., 36(1976), 167-171.
  • [16] J. P. Serre, Modules projectifset espaces fibres a fibre vectorielle, Sem. Dubriel- Pisot, 11 (1957-1958), No. 2.
  • [17] C. S. Seshadri, Triviality of vector bundles over the affine space K2, Proc. Natl. Acad. Sci. U. S. A., 44 (1958),456-458.
  • [18] R. G. Swan, Serre's problem, in Conference on commutative algebra, 1975, ed. A. Geramita, Queen's Papers in Pure and Applied Math., 42.