Pacific Journal of Mathematics

On singular indices of rotation free densities.

Hideo Imai

Article information

Source
Pacific J. Math., Volume 80, Number 1 (1979), 179-190.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785963

Mathematical Reviews number (MathSciNet)
MR534707

Zentralblatt MATH identifier
0425.31005

Subjects
Primary: 30F25: Ideal boundary theory
Secondary: 31A35: Connections with differential equations

Citation

Imai, Hideo. On singular indices of rotation free densities. Pacific J. Math. 80 (1979), no. 1, 179--190. https://projecteuclid.org/euclid.pjm/1102785963


Export citation

References

  • [1] M. Heins, Riemann surfaces of infinitegenus, Ann.Math., 55 (1952), 296-317.
  • [2] K. Hayashi, Les solutions positives de Vequation u--~Pu sur une surface de Riemann,Kdai Math. Sem. Rep., 13 (1961), 20-24.
  • [3] L. A. Hunt and R. L. Wheeden, Positive harmonic functions on Lipschitz domain, Trans. Amer. Math. Soc, 147 (1970), 507-527.
  • [4] S. Ito, On the existence of Green function and positive superharmonicfunction for linear elliptic operator of second order, J. Math. Soc. Japan, 16 (1964), 299-306. 5# 1Martin boundary for elliptic differential operators of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334.
  • [6] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densi- ties, II, J. Math. Soc. Japan, 28 (1976), 323-342.
  • [7] C. Miranda, Partial Differential Equations of EllipticType, Springer, 1970.
  • [8] M. Nakai, Martin boundary over an isolated singularityof rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
  • [9] M. Nakai,A test of Picard principlefor rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431.
  • [10] M. Nakai, Picard principle and Riemann theorem, Thoku Math. J., 28 (1976), 277-292.
  • [11] M. Nakai, Picard principle for finite densities, Nagoya Math. J., 70 (1978), 7-24.
  • [12] M. Ozawa, Some classes of positive solutions of u-- Pu on Riemannsurfaces, I, Kdai Math. Sem. Rep., 6 (1954), 121-126.
  • [13] M. Ozawa,Some classes of positive solutions of u-- Pu on Riemann surfaces, II, Kdai Math. Sem. Rep., 7 (1955), 15-20.
  • [14] L. Sario and M. Nakai, Classification Theory of Riemann Surface, Springer, 1970.