Pacific Journal of Mathematics

Characterizing reduced Witt rings. II.

Thomas C. Craven

Article information

Source
Pacific J. Math., Volume 80, Number 2 (1979), 341-349.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785709

Mathematical Reviews number (MathSciNet)
MR539420

Zentralblatt MATH identifier
0404.12015

Subjects
Primary: 10C04
Secondary: 12D15: Fields related with sums of squares (formally real fields, Pythagorean fields, etc.) [See also 11Exx] 15A63: Quadratic and bilinear forms, inner products [See mainly 11Exx]

Citation

Craven, Thomas C. Characterizing reduced Witt rings. II. Pacific J. Math. 80 (1979), no. 2, 341--349. https://projecteuclid.org/euclid.pjm/1102785709


Export citation

References

  • [1] E. Becker and L. Brcker, On the description of the reduced Witt ring, J. Algebra, 52 (1978), 328-346.
  • [2] E. Becker and E. Kpping, ReduziertequadratischeFormen andSemiordnungen reeller K'rper, Abh. Math. Sem. Univ. Hamburg 46, (1977), 143-177.
  • [3] L. Brocker, Zur Theorie der quadratischenFormen uber formal reellen Krpern, Math. Ann., 210 (1974), 233-256.
  • [4] R. Brown, The reduced Witt ring of a formallyreal field, Trans. Amer. Math.
  • [5] T. Craven, The Boolean space of orderings of afield, Trans. Amer. Math. Soc, 209 (1975), 225-235.
  • [6] T. Craven, Characterizing reduced Witt rings of fields, J. Algebra, 53 (1978), 68-77.
  • [7] T. Craven, Existence of SAP extension fields, Arch. Math., 29 (1977), 594-597.
  • [8] T. Craven, Stabilityin Witt rings, Trans. Amer. Math. Soc, 225 (1977), 227-242.
  • [9] R. Elman and T. Y. Lam, Quadratic forms over formally real elds and Pythagorean fields, Amer. J. Math., 94 (1972), 1155-1194.
  • [10] J. Kleinstein and A. Rosenberg, Signatures and semisignaturesof abstractWitt rings and Witt rings of semilocal rings, Canad. J. Math., 30 (1978), 872-895.
  • [11] M. Knebusch, A. Rosenberg and R. Ware, Signatures on semilocal rings, J. Algebra, 26 (1973), 208-250.
  • [12] M. Knebusch, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math., 94 (1972), 119-155.
  • [13] M. Knebusch,Structure of Witt rings, quotients of abelian group rings, and orderings of fields, Bull. Amer. Math. Soc, 77 (1971), 205-210.
  • [14] M. Marshall, Classification of finite spaces of orderings, to appear.
  • [15] M. Marshall,Quotients and inverse limits of spaces of orderings, to appear.
  • [16] M. Marshall, A reduced theory of quadratic forms, Conference on Quadratic Forms, Queen's Papers in pure and applied mathematics, No. 46, 569-579, Queen's University Kingston, Canada, 1977.

See also

  • Thomas C. Craven. Characterizing reduced Witt rings of fields. I? [MR 58 #505] Craven, Thomas C. Characterizing reduced Witt rings of fields J. Algebra 53 1978 1 68--77.