Pacific Journal of Mathematics

Spaces in which compacta are uniformly regular $G_{\delta}$.

Kyung Bai Lee

Article information

Source
Pacific J. Math., Volume 81, Number 2 (1979), 435-446.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785285

Mathematical Reviews number (MathSciNet)
MR547610

Zentralblatt MATH identifier
0409.54037

Subjects
Primary: 54E20: Stratifiable spaces, cosmic spaces, etc.

Citation

Lee, Kyung Bai. Spaces in which compacta are uniformly regular $G_{\delta}$. Pacific J. Math. 81 (1979), no. 2, 435--446. https://projecteuclid.org/euclid.pjm/1102785285


Export citation

References

  • [1] A. V. Arhangeskii, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115- 162.
  • [2] J. G. Ceder, Some generalizationsof metric spaces, Pacific J. Math., 11 (1961), 105-125.
  • [3] M. M. Coban, Mappings and metric spaces, Soviet Math. Dokl., 10 (1969), 258- 260.
  • [4] H. Cook, Certain product and continuous semimetrics, Topology Conference-Arizona State Univ., (1967), 58-63.
  • [5] G. D. Creede, Concerning semistratifiable spaces, Pacific J. Math., 32 (1970), 47-54.
  • [6] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, 1960.
  • [7] R. W. Heath, Metrizability,compactness and paracompactness in Moore spaces, Notices Amer. Math. Soc, 10 (1963), 105.
  • [8] R. W. Heath, On open mappings and certain spaces satisfyingthefirst countability axiom, Fund. Math., 57 (1965), 91-96.
  • [9] R. E. Hodel, Spaces defined by sequence of open covers, Duke Math. J., 39 (1972), 253-263.
  • [10] T. Ishii, On wM-spaces I, II, Proc. Japan Acad., 46 (1970), 5-15.
  • [11] Kodake, On Nagata spaces and wN-spaces, Sc. Rep. Tokyo Kyoiku Daigaku Sect., A12 (1973), 46-48.
  • [12] K. B. Lee, On certain g-first countable spaces, Pacific J. Math., 65 (1976), 113- 118.
  • [13] W. F. Lindgren and P. Fletcher, Locally quasi-uniformspaces with countable bases, Duke Math. J., 41 (1974), 231-240.
  • [14] D. J. Lutzer, Semimetrizableand stratifiable spaces, Gen. Topology and its Appl., 1 (1971), 43-48.
  • [15] H. W. Martin, Metrizationof symmetric spaces and regular maps, Proc. Amer. Math. Soc, 35 (1972), 269-274.
  • [16] H. W. Martin, Metrizabilityof M-spaces, Canad. J. Math., 25 (1973), 840-841.
  • [17] H. W. Martin,Local connectedness in developable spaces, Pacific J. Math., 61 (1975), 219-224.
  • [18] W. G. McArthur, G-diagonals and metrizationtheorems, Pacific J. Math., 44 (1973), 613-617.
  • [19] E. A. Michael, A note on closed maps and compact sets, Israel J. Math., 2 (1964), 173-176.
  • [20] R. R. Sabella, Convergence properties of neighboring sequences, Proc. Amer. Math. Soc, 38 (1973), 405-409.
  • [21] P. Zenor, On spaces with regular G-diagonals, Pacific J. Math., 40 (1972), 759- 763.