Pacific Journal of Mathematics

On selfadjoint derivation ranges.

Joseph G. Stampfli

Article information

Source
Pacific J. Math., Volume 82, Number 1 (1979), 257-277.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785077

Mathematical Reviews number (MathSciNet)
MR549849

Zentralblatt MATH identifier
0427.47025

Subjects
Primary: 47B47: Commutators, derivations, elementary operators, etc.
Secondary: 47A05: General (adjoints, conjugates, products, inverses, domains, ranges, etc.) 47A65: Structure theory

Citation

Stampfli, Joseph G. On selfadjoint derivation ranges. Pacific J. Math. 82 (1979), no. 1, 257--277. https://projecteuclid.org/euclid.pjm/1102785077


Export citation

References

  • [1] J. H. Anderson, J. W. Bunce, J. A. Deddins, and J. P. Williams, C* algebras and derivation ranges: D-symmetric operators, (to appear).
  • [2] C. Apostol, Inner derivations with closed range, Rev. Roum. Math. Pures et Appl., (1976).
  • [3] C. Apostol and J. G. Stampfli, On derivation ranges, Indiana University Math. J., 25 (1976), 857-869.
  • [4] C. A. Berger and B. I. Shaw, Intertwing, analytic structure and trace norm estimates, Proceedings of a Conference on Operator Theory, Lecture Notes in Math. vol. 345, Springer-Verlag, New York, 1968.
  • [5] L. Brown, R. G. Douglas and P. A. Fillmore, Unitary equivalence modulo compact operators and extensions of C^-algebras, Proceedings of a Conference on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, New York, 1968.
  • [6] I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  • [7] L. A. Fialkow, A note on the operator X->AX --XB, Trans. Amer. Math. Soc, 24 (1978), 147-168.
  • [8] P. R. Halmos, The problems in Hilbert space, Bull. Amer. Math. Soc, 76 (1970), 887- 933.
  • [9] J. G. Hocking and G. S. Young, Topology, Addison Wesley, Reading, Mass., 1961.
  • [10] B. E. Johnson and J. P. Williams, The range of a normal derivation,Pacific J. Math., 58 (1975), 105-122.
  • [11] R. V. Kadison, Derivations on operator algebras, Ann. of Math., 83 (1966), 280-293.
  • [12] I. Kaplansky, Modules over operator algebras, Amer. J. Math., 27 (1959), 839-859.
  • [13] G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc, 10 (1959), 32-41.
  • [14] R. L. Moore, An asymptotic Fuglede Theorem, Proc. Amer. Math. Soc, 50 (1975), 138-142.
  • [15] B. Sz.-Nagy, On uniformlybounded linear transformationsin Hilbert space, Acta Sci. Math. (Szeged), 11 (1947), 87-92.
  • [16] C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J., 18 (1971), 33-36.
  • [17] M. Rosenblum, On the operator equation BX-XA=Q,Duke Math. J., 23 (1956), 263-269.
  • [18] S. Sakai, Derivation on W* algebras, Ann. of Math., 83 (1966), 273-279.
  • [19] A. L. Shields, Weighted shift operators and analytic functiontheory, Topics in Operator Theory, Math Surveys 13, Amer. Math. Soc, Providence, R. L, 1974.
  • [20] J. G. Stampfli, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747.
  • [21] J. G. Stampfli, Derivations on &($f)\The range, Illinois J. Math., 17 (1973), 518-524.
  • [22] J. G. Stampfli and B. L. Wadhwa, An asymmetricPutnam-FugledeTheorem for dominant operators, Indiana University Math. J., 25 (1976), 359-365.
  • [23] J. P. Williams, On the range of a derivation, Pacific J. Math., 28 (1971), 273-279.
  • [24] T. Yoshino, Subnormal operators with a cyclic vector, Tohoku Math. J., 21 (1969), 47-55.