Pacific Journal of Mathematics

$C^{\ast}$-algebras associated with free products of groups.

William L. Paschke and Norberto Salinas

Article information

Source
Pacific J. Math., Volume 82, Number 1 (1979), 211-221.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785073

Mathematical Reviews number (MathSciNet)
MR549845

Zentralblatt MATH identifier
0413.46049

Subjects
Primary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx]
Secondary: 46L05: General theory of $C^*$-algebras

Citation

Paschke, William L.; Salinas, Norberto. $C^{\ast}$-algebras associated with free products of groups. Pacific J. Math. 82 (1979), no. 1, 211--221. https://projecteuclid.org/euclid.pjm/1102785073


Export citation

References

  • [1] B. Blackadar, Weak expectations and nuclear C*-algebras, preprint.
  • [2] L. Brown, R. Douglas, and P. Fillmore, Extensions of C*-algebras and K-homology, Ann. Math., 105 (1977), 265-324.
  • [3] M. Choi, A simple C*-algebra generated by two finite-order unitaries,Canad. J. Math., to appear.
  • [4] M. Choi and E. Effros, Nuclear C*-algebras and injectivity:the general case, Indiana U. Math. J., 26 (1977), 443-446.
  • [5] J. Cuntz, SimpleC ^-algebras generated by isometries, Commun. Math. Phys., 57 (1977), 173-185.
  • [6] J. Dixmier, Les C*-Algebreset Leurs Representations,Gauthier-Villars, Paris, 1969.
  • [7] F. Greenleaf, InvariantMeans on Topological Groups, Van Nostrand, New York, 1969.
  • [8] M. Hall, Theory of Groups, MacMillan, New York, 1959.
  • [9] E. C. Lance, On nuclear C*-algebras,J. Functional Analysis, 12 (1973), 157-176.
  • [10] W. Paschke and N. Salinas, Matrix algebras over On, Michigan Math. J., 26(1979), 3-12.
  • [11] R. Powers, Simplicityof the C*-algebra associated with the free group on two generators, Duke Math. J., 42 (1975), 151-156.
  • [12] N. Salinas, Hypoconvexity and essentially n-normal operators, Trans. Amer. Math. Soc, to appear.
  • [13] D. Voiculescu, A non-commutativeWeyl-von Neumann theorem, Rev. Roum.Math. Pures Appl., 21 (1976), 97-118.
  • [14] S. Wassermann, A pathology in the ideal space of L(H) (8)L(H), preprint.