Pacific Journal of Mathematics

Subspaces of positive definite inner product spaces of countable dimension.

Werner Bäni

Article information

Source
Pacific J. Math., Volume 82, Number 1 (1979), 1-14.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102785056

Mathematical Reviews number (MathSciNet)
MR549828

Zentralblatt MATH identifier
0387.15017

Subjects
Primary: 10C04
Secondary: 15A63: Quadratic and bilinear forms, inner products [See mainly 11Exx] 46C99: None of the above, but in this section

Citation

Bäni, Werner. Subspaces of positive definite inner product spaces of countable dimension. Pacific J. Math. 82 (1979), no. 1, 1--14. https://projecteuclid.org/euclid.pjm/1102785056


Export citation

References

  • [1] P. Gabriel, Representations Indecomposables, Seminaire Bourbaki, vol. 1973/74, expose n 444, Springer Lecture Notes 431.
  • [2] H. Gross, On Witt's theorem in the denumerably infinite case, II, Math. Ann., 170 (1967), 145-165. 3# fEine Bemerkungzu dichten Unterrdumen reeller quadratischer R'wme, Comment. Math. Helv., 45 (1970), 472-493.
  • [4] H. Gross,Isomorphisms between lattices of linear subspaces which are induced by isometrics, J. Algebra, 49 (1977), 537-546.
  • [5] H. Gross,Quadratic forms in infinite dimensional spaces, Progress in Mathematics Vol. 1, Birkhauser Basel-Boston, 1979.
  • [6] I. Kaplansky, Forms in infinite dimensionalspaces, An. Acad. Brasil. Cienc, 22 (1950), 1-17.
  • [7] H. G. Quebbemann, R. Scharlau, W. Scharlau and M. Schulte, Quadratische Formen in additivenKategorien, Bull. Soc. Math. France, Memoire 48 (1976), 93-101.
  • [8] U. Schneider, Beitrdge zurTheorie der sesquilinearenRumeunendlicherDi-