Pacific Journal of Mathematics

On the asymptotic behavior of large prime factors of integers.

K. Alladi and P. Erdős

Article information

Source
Pacific J. Math., Volume 82, Number 2 (1979), 295-315.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784873

Mathematical Reviews number (MathSciNet)
MR551689

Zentralblatt MATH identifier
0419.10042

Subjects
Primary: 10H15

Citation

Alladi, K.; Erdős, P. On the asymptotic behavior of large prime factors of integers. Pacific J. Math. 82 (1979), no. 2, 295--315. https://projecteuclid.org/euclid.pjm/1102784873


Export citation

References

  • [1] K. Alladi, Analogues to the Hardy-Ramanujan theorems, in Proceedings of the
  • [2] K. Alladi and P. Erds, On an additive arithmetic function, Pacific J. Math., 71 (2), (1977), 275-294.
  • [3] N. G. de Bruijn, On the number of positive integers X and free of primefac- tors > y, Indag. Math., 13 (1951), 50-60.
  • [4] K. Chandrasekharan, ArithmeticalFunctions, Springer-Verlag, New York, 1970.
  • [5] P. D. T. A. Elliott, On a problem of Hardyand Ramanujan,Mathematika 23, (1976), 10-17.
  • [6] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quarterly J. Math., 58 (1917), 76-92.
  • [7] G. H. Hardy and E. M. Wright, An Introductionto the TheoryofNumbers, Oxford, Clarendon, 1960, 4-Ed.
  • [8] D. E. Knuth and L. T. Pardo, Analysisof a simple factorisationalgorithm, (to appear).
  • [9] W. J. LeVeque, Topics in NumberTheory, Vol. 2, Addison-Wesley, Reading, Mass., 1956.
  • [10] K. Norton, Numbers with small prime factors and the least kth-power non-residue, Memoirs of the A. M. S., 106, Providence, Rhode Island, 1971.
  • [11] J. B. Rosser and L. Schoenfeld, Approximateformulasforsome functionsof prime numbers, Illinois J. Math., 6 (1962), 64-94.