Pacific Journal of Mathematics

Comparison theorems for delay differential equations.

W. E. Mahfoud

Article information

Source
Pacific J. Math., Volume 83, Number 1 (1979), 187-197.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784669

Mathematical Reviews number (MathSciNet)
MR555047

Zentralblatt MATH identifier
0441.34053

Subjects
Primary: 34K15

Citation

Mahfoud, W. E. Comparison theorems for delay differential equations. Pacific J. Math. 83 (1979), no. 1, 187--197. https://projecteuclid.org/euclid.pjm/1102784669


Export citation

References

  • [1] G. V. Anan'eva and V. I. Balaganskii, Oscillation of the solutions of certain differ- ential equations of higher order, Uspehi Mat. Nauk 14, No. 1 (1959), 135-140.
  • [2] J. J. A. M. Brands, Oscillation theorems forsecond-order functionaldifferential equations, J. Math. Anal. AppL, 63 (1978), 54-64.
  • [3] T. A. Burton and John R. Haddock, On the delay-differentialequations xf{t) + a(t)f(x{t - r(t))) = 0 and "(*) + a(t)f(x(t - r(t))) = 0, J. Math. Anal. AppL, 54 (1976), 37-48.
  • [4] I. V. Kamenev, On the oscillation of solutions of a nonlinearequation of higher order, Differencial'nye Uravnenya, 7 (1971), 927-929.
  • [5] A. G. Kartsatos and H. Onose, A comparison theorem for functionaldifferential equations, Bull. Aust. Math. Soc, 14 (1976), 343-347.
  • [6] I. T. Kiguradze, Oscillation properties of solutions of certain ordinarydifferential equations, Dokl. Akad. Nauk SSSR, 144 (1962), 33-36 or Soviet Math. Dokl,. 3 (1962), 649-652.
  • [7] T. Kusano and H. Onose, Oscillations of functionaldifferentialequationswith retarded argument, J. Differential Equations, 15 (1974), 269-277.
  • [8] David Lowell Lovelady, On asymptotic analysis of an odd order lineardifferential equation, Pacific J. Math., 57 (1975), 475-480. 9# fOscillation and a class of linear delay differential equations, Trans. Amer. Math. Soc, 226 (1977), 345-364.
  • [10] W. E. Mahfoud, Oscillation and asymptotic behavior of solutions of nth order nonlineardelay differential equations, J. Differential Equations, 24 (1977), 75-98.
  • [11] H. Onose, A comparison theorem and the forced oscillation, Bull. Aust. Math. Soc, 13 (1975), 13-19.
  • [12] James S. W. Wong, Second order oscillation with retarded arguments,Ordinary Differential Equations, Academic Press, New York/London, 1972, 581-596.