Pacific Journal of Mathematics

Scale-invariant measurability in Wiener space.

G. W. Johnson and D. L. Skoug

Article information

Source
Pacific J. Math., Volume 83, Number 1 (1979), 157-176.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784666

Mathematical Reviews number (MathSciNet)
MR555044

Zentralblatt MATH identifier
0414.60066

Subjects
Primary: 28C20: Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.) [See also 46G12, 58C35, 58D20, 60B11]
Secondary: 58D20: Measures (Gaussian, cylindrical, etc.) on manifolds of maps [See also 28Cxx, 46T12] 60B11: Probability theory on linear topological spaces [See also 28C20]

Citation

Johnson, G. W.; Skoug, D. L. Scale-invariant measurability in Wiener space. Pacific J. Math. 83 (1979), no. 1, 157--176. https://projecteuclid.org/euclid.pjm/1102784666


Export citation

References

  • [1] J. E. Bearman, Rotations in the product of two Wiener spaces, Proc. Amer. Math. Soc, 3 (1952), 129-137.
  • [2] R. H. Cameron, The translation pathology of Wiener space, Duke Math. J., 21 (1954), 623-628.
  • [3] R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman in- tegrals, J. of Math, and Physics, 39 (1960), 126-140.
  • [4] R. H. Cameron,The Ilstow and Feynman integrals, J. Anal. Math., 10 (1962/1963), 287- 361.
  • [5] R. H. Cameron and R. E. Graves, Additive functionalson a space of continuous functions, Trans. Amer. Math. Soc, 7O (1951), 160-176.
  • [6] R. H. Cameron and W. T. Martin, Transformationsof Wiener integralsunder translations, Ann. Math., 45 (1944), 386-396.
  • [7] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under a general class of linear transformations,Trans. Amer. Math. Soc, 58 (1945), 184-219.
  • [8] R. H. Cameron and W. T. Martin, The behavior of measure and measurabilityunder change of scale in Wiener space, Bull. Amer. Math. Soc, 53 (1947), 130-137.
  • [9] R. H. Cameron and D. A. Storvick, An operator valued function space integral and a related integral equation, J. Math, and Mech., 18 (1968), 517-552.
  • [10] R. H. Cameron and D. A. Storvick, An integral equation related to the Schroedinger equation with applica- tion to integration in function space, Problems in Analysis, Princeton U. Press, Princeton, (1970), 175-193.
  • [11] R. H. Cameron and D. A. Storvick, An operator valued function space integral applied to integrals of func- tions of class L2, J. Math. Anal. Appl., 42 (1973), 330-372.
  • [12] R. H. Cameron and D. A. Storvick, An operator valued function space integral applied to integrals of func- tions of class LL, Proc. London Math. Soc, 27 (1973), 345-360.
  • [13] R. H. Cameron and D. A. Storvick,An operator valued function space integral applied to multiple integrals of functions of class Llt Nagoya Math. J., 51 (1973), 91-122.
  • [14] R. H. Cameron and D. A. Storvick, Two related integrals over spaces of continuous functions,Pacific J. Math., 55 (1974), 19-37.
  • [15] R. H. Cameron and D. A. Storvick,An operator valued Yeh-Wiener integral and a Wiener integral equation, Indiana, Univ. Math. J., 25 (1976), 235-258.
  • [16] R. H. Cameron and D. A. Storvick, An L2 analytic Fourier-Feynmantransform,Michigan Math. J., 23 (1976), 1-30.
  • [17] R. H. Cameron and D. A. Storvick, An operator-valued Yeh-Feynman integral and a Feynman integral equa- tion, to appear.
  • [18] R. J. Collins, An operator valued function space integral applied to analytic and non-analytic functions of integrals, Thesis, U. of Minnesota, (1971).
  • [19] Robert A. Ewan, The Cameron-Storvickoperator valued functionspace integral for a class of finite dimensional functionals,Thesis, U. of Nebraska, (1972).
  • [20] P. Halmos, Measure Theory, Van Nostrand, Princeton, New Jersey, 1950.
  • [21] Bernard 0. Haugsby, An operator valued integral in a function space of continuous vector valued functions,Thesis, U. of Minnesota, (1972).
  • [22] E. Hille and R. S. Phillips, Functional Analysisand Semi-groups,Amer. Math. Soc. Colloq. Publ., 31 (1957).
  • [23] G. W. Johnson, unpublished class notes.
  • [24] G. W. Johnson and D. L. Skoug, Operator-valued Feynmanintegrals of certain finite-dimensionalfunctionals,Proc. Amer. Math. Soc, 24 (1970), 774-780.
  • [25] G. W. Johnson and D. L. Skoug, Operator-valued Feynmanintegrals offinite-dimensionalfunctionals, Pacific J. Math., 34 (1970), 774-780.
  • [26] G. W. Johnson and D. L. Skoug, An operator valued function space integral:a sequel to Cameron and Storvick's paper, Proc. Amer. Math. Soc, 27 (1971), 514-518.
  • [27] G. W. Johnson and D. L. Skoug, A Banach algebra of Feynman integrable functionalswithapplication to an integral equation formally equivalent to Schroedinger's equation, J. of Functional Analysis, 12 (1973), 129-152.
  • [28] G. W. Johnson and D. L. Skoug, Feynman integrals of non-factor able finite-dimensional functionals, Pacific J. Math., 45 (1973), 257-267.
  • [29] G. W. Johnson and D. L. Skoug, Cameron and Storvick's function space integral for certain Banach spaces of functionals,J. of London Math. Soc, 9 (1974), 103-117.
  • [30] G. W. Johnson and D. L. Skoug, Cameron and Storvick's function space integral for a Banach space of functionals generated by finite-dimensional functionals,Annali Di Mathematica Pura Ed Applicata, 104 (1975), 67-83.
  • [31] G. W. Johnson and D. L. Skoug, A function space integral for a Banach space of functionalson Wiener space, Proc Amer. Math. Soc, 43 (1974), 141-148.
  • [32] G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: The L\ theory, J. of Math. Anal, and Appl., 50 (1975), 647-667.
  • [33] G. W. Johnson and D. L. Skoug, The Cameron-Storvickfunctionspace integral:an L(LP,LP')theory, Nagoya J. Math., 60 (1976), 93-137.
  • [34] G. W. Johnson and D. L. Skoug, An Lp analytic Fourier-Feynmantransform, to appear in Michigan Math. J.
  • [35] P. Levy, he mouvement Brownien plan, Amer. J. Math., 62 (1940), 487-550.
  • [36] G. Maruyama, Notes on Wiener integrals, Kodai Mathematical Seminar Reports, 3 (1950), 41-44.
  • [37] I. E. Segal, Distributionsin Hilbert space and canonical systems of operators, Trans. Amer. Math. Soc, SS (1958), 12-41.
  • [38] D. L. Skoug, Generalized Ilstow and Feynman integrals, Pacific J. Math., 26 (1968), 171-192.
  • [39] D. L. Skoug, Converses to measurabilitytheorems for Yeh-Wiener space, Proc Amer. Math. Soc, 57 (1976), 304-310.
  • [40] D. L. Skoug, The change of scale and translation pathology in Yen-Wiener space, Riv. Mat. Univ. Parma, 3 (1977), 78-87.