Pacific Journal of Mathematics

Chain conditions in free products of lattices with infinitary operations.

G. Grätzer, A. Hajnal, and David Kelly

Article information

Source
Pacific J. Math., Volume 83, Number 1 (1979), 107-115.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784662

Mathematical Reviews number (MathSciNet)
MR555040

Zentralblatt MATH identifier
0414.06003

Subjects
Primary: 06B25: Free lattices, projective lattices, word problems [See also 03D40, 08A50, 20F10]

Citation

Grätzer, G.; Hajnal, A.; Kelly, David. Chain conditions in free products of lattices with infinitary operations. Pacific J. Math. 83 (1979), no. 1, 107--115. https://projecteuclid.org/euclid.pjm/1102784662


Export citation

References

  • [1] M. E. Adams and D. Kelly, Chain conditions in free products of lattices, Algebra Universalis, 7 (1977), 235-243.
  • [2] W. W. Confort and S. Negrepontis, The Theory of Ultrafilters,Springer-Verlag, New York, 1974.
  • [3] P. Erds and R. Rado, Intersection theorems forsystems of sets II, J. London Math. Soc, 44 (1969), 467-479.
  • [4] F. Galvin and B. Jnsson, Distributive suhlattices of a free lattice, Canad. J. Math., 13 (1961), 265-272.
  • [5] G. Gratzer, General Lattice Theory, Birkhauser Verlag, Basel, 1979.
  • [6] G. Gratzer and D. Kelly, Free m-product of lattices, Colloq. Math., to appear.
  • [7] G. Gratzer and D. Kelly, A normal form theorem for lattices completely generated by a subset, Proc. Amer. Math. Soc, 67 (1977), 215-218.
  • [8] G. Gratzer and H. Lakser, Chain conditions in the distributivefree product of lattices, Trans. Amer. Math. Soc, 144 (1969), 301-312.
  • [9] B. Jnsson, Relatively free products of lattices, Algebra Universalis, 1 (1972), 362-373.
  • [10] R. Sikorski, Boolean Algebras, 3rd edition, Springer-Verlag, New York, 1969.