Pacific Journal of Mathematics

Harmonic analysis on compact hypergroups.

Richard C. Vrem

Article information

Pacific J. Math., Volume 85, Number 1 (1979), 239-251.

First available in Project Euclid: 8 December 2004

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 43A30: Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
Secondary: 43A10: Measure algebras on groups, semigroups, etc.


Vrem, Richard C. Harmonic analysis on compact hypergroups. Pacific J. Math. 85 (1979), no. 1, 239--251.

Export citation


  • [1] A. Chilana and K. A. Ross, Spectral synthesis in hyper groups, to appear.
  • [2] N. Dunford and J. T. Schwartz, Linear operators I, II, Interscience Publishers Inc., 1958 and 1963.
  • [3] C. F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc, 179 (1973), 331-348.
  • [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer-Verlag, 1970.
  • [5] R. I. Jewett, Spaces with an abstract convolution of measures, Advances in Math., 18 (1975), 1-101.
  • [6] M. G. Krein, Hermitian-positivekernels on homogeneous spaces, I and II, Ukrain. Mat. Z., 1 (1949), 64-98. English translation: Amer. Math. Soc. Translation, Ser. 2, Vol. 34 (1963), 69-164.
  • [7] L. Nachbin, On the finite dimensionalityof every irreducible representationof a compact group, Proc. Amer. Math. Soc, 12 (1961), 11-12.
  • [8] K. A. Ross, Hyper groups and centers of measure algebras, 1st. Naz. Alta. Mat. (Symposia Math.), volume XXXII, to appear.
  • [9] K. A. Ross,Centers of hyper groups, Trans. Amer. Math. Soc, to appear.
  • [10] R. Spector, Apercu de la theorie des hypergroupes, Lecture Notes in Mathematics #497. (Analyse Harmonique sur les Groupes de Lie, Sem. Nancy-Strasbourg 1973-1975), Springer-Verlag.