Pacific Journal of Mathematics

Invariant means and analytic actions.

Theodore Mitchell

Article information

Source
Pacific J. Math., Volume 85, Number 1 (1979), 145-153.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784087

Mathematical Reviews number (MathSciNet)
MR571632

Zentralblatt MATH identifier
0447.43003

Subjects
Primary: 43A07: Means on groups, semigroups, etc.; amenable groups
Secondary: 22A20: Analysis on topological semigroups 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

Citation

Mitchell, Theodore. Invariant means and analytic actions. Pacific J. Math. 85 (1979), no. 1, 145--153. https://projecteuclid.org/euclid.pjm/1102784087


Export citation

References

  • [1] M. M. Day, Fixed point theorems for compact convex sets, Illinois J. Math., 5 (1961), 585-590.
  • [2] K. DeLeeuw and I. Glicksberg, Applicationsof almost periodcompactifications, Acta Math., 105 (1961), 63-97.
  • [3] E. Hille, Analytic Function Theory, Vol. I, Ginn, Boston, Ma., 1959.
  • [4] E. Hille, Analytic Function Theory, Vol. II, Ginn, Boston, Ma., 1962.
  • [5] K. H. Hofman and P. S. Mostert, Elements of Compact Semigroups,Merrill, Columbus, Ohio, 1966.
  • [6] R. D. Holmes and A. T. Lau, Non-expansive actions of topological semigroups and fixed points, J. London Math. Soc, (2), 5 (1972), 330-336.
  • [7] H. D. Junghenn, Some general results on fixed-points and invariantmeans, Semi- group Forum, 11 (1975), 153-164.
  • [8] J. L. Kelley, General Topology, Van Nostrand, Princeton, N. J., 1955.
  • [9] A. T.-M. Lau, Invariant means on almost periodic functions and fixed point proper- ties, Rocky Mountain J. Math., 3 (1973), 69-76.
  • [10] A. T.-M. Lau, Invariant means on almost periodic functions and equicontinuous actions, Proc. Amer. Math. Soc, 49 (1975), 379-382.
  • [11] T. Mitchell, Common fixed-points for equicontinuoussemigroups ofmappings, Proc. Amer. Math. Soc, 33 (1972), 146-150.
  • [12] R. Oliver, Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helvetia, 50 (1975), 155-177.
  • [13] A. L. Shields, On fixed points of commutinganalytic functions,Proc Amer. Math. Soc, 15 (1964), 703-706.
  • [14] J. C. S. Wong, Topological semigtoups and representations,Trans. Amer. Math. Soc, 200 (1974), 89-109.