Pacific Journal of Mathematics

Semilattices having bialgebraic congruence lattices.

Garr S. Lystad and Albert R. Stralka

Article information

Source
Pacific J. Math., Volume 85, Number 1 (1979), 131-143.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784086

Mathematical Reviews number (MathSciNet)
MR571631

Zentralblatt MATH identifier
0437.06003

Subjects
Primary: 06A12: Semilattices [See also 20M10; for topological semilattices see 22A26]
Secondary: 06B30: Topological lattices, order topologies [See also 06F30, 22A26, 54F05, 54H12]

Citation

Lystad, Garr S.; Stralka, Albert R. Semilattices having bialgebraic congruence lattices. Pacific J. Math. 85 (1979), no. 1, 131--143. https://projecteuclid.org/euclid.pjm/1102784086


Export citation

References

  • [1] C. R. Atherton, Concerning ntrnictopologies on Boolean algebras and certain bicompactly generated lattices, Glasgow Math. J., 11 (1970), 156-161.
  • [2] P. Crawley and P. R. Dilworth, The Algebraic Theory of Lattices, Prentice Hall, 1973.
  • [3] R. A. Dean and R. H. Oehmke, Idempotentsemigroups with distributiveright congruence lattices, Pacific J. Math., 14 (1964), 1187-1209.
  • [4] S. Fajtlowicz and S. Schmidt, Bezout families,join-congruences and meet-irreduc- ible ideals, Colloq. Math. Soc. Janos Bolyai. 14 (1974), 51-76.
  • [5] K. H. Hofmann, M. Mislove and A. Stralka, The PontryaginDualityof Compact O-dimensional Semilattices and its Applications, Lecture Notes in Math. 396, Springer- Verlag, Heidelberg, 1974.
  • [6] D. C. Kent, and C. R. Atherton, The order-topology in a bicompactly generated lattice, J. Australian Math. Soc, 8 (1968), 345-349.
  • [7] G. S. Lystad, Dissertation, University of California, Riverside, 1978.
  • [8] Dona Papert Strauss, Congruence relations in semilattices, J. London Math. Soc, 39 (1964), 723-729.
  • [9] J. W. Stepp, Semilatticeswhich are embeddable topological lattices, J. London Math. Soc, (2) 7 (1973), 76-82.
  • [10] A. Stralka, Quotients of products of compact chains, Bull. London Math. Soc, 11 (1979), 1-4.
  • [11] J. Varlet, Congruences dans les demi-lattis, Bull. Soc. Roy, Soc. Liege, 34 (1965), 231-240.