Pacific Journal of Mathematics

Une généralisation du théorème de Gleason-Kahane-Żelazko pour les algèbres de Banach.

Bernard Aupetit

Article information

Source
Pacific J. Math., Volume 85, Number 1 (1979), 11-17.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102784078

Mathematical Reviews number (MathSciNet)
MR571623

Zentralblatt MATH identifier
0398.46041

Subjects
Primary: 46H05: General theory of topological algebras

Citation

Aupetit, Bernard. Une généralisation du théorème de Gleason-Kahane-Żelazko pour les algèbres de Banach. Pacific J. Math. 85 (1979), no. 1, 11--17. https://projecteuclid.org/euclid.pjm/1102784078


Export citation

References

  • [1] S. T. M. Ackermans, A case of strong spectral continuity,Indag. Math., 30 (1968), 455-459.
  • [2] E. Artin, Algebre geometrique, Gauthier-Villars, Paris, 1962.
  • [3] B. Aupetit, Caracterisation spectrale des algebres de Banach commutatives,Pacific J. Math., 63 (1976), 23-35.
  • [4] B. Aupetit,Proprietes spectrales des algebres de Banach, Lecture Notes in Mathe- matics, Springer-Verlag, Heidelberg, 1979.
  • [5] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973.
  • [6] A. Browder, Introductionto Function Algebras, W. A. Benjamin, New York, 1969.
  • [7] A. M. Gleason, A characterizationof maximal ideals, J. Analyse Math., 19 (1967), 171-172.
  • [8] I. N. Herstein, Noncommutativerings, Carus Math. Mon. no 15, Math. Assoc. Amer. 1968.
  • [9] I. N. Herstein,Topics in Ring Theory, Univ. Chicago Press, Chicago, 1969.
  • [10] J-P. Kahane and W. Zelazko, A characterizationof maximal ideals incommutative Banach algebras, Studia Math., 29 (1968), 339-343.
  • [11] I. Kaplansky, Algebraic and analyticaspects of operator algebras, Regional Con- ference Series in Math., Amer. Math. Soc, Providence, 1970.
  • [12] M. Marcus and R. Purves, Linear transformationson algebras of matrices, Canad. J. Math., 11 (1959), 383-396.
  • [13] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
  • [14] A. M. Sinclair, Jordan homomorphismsand derivationson semisimpleBanach algebras, Proc. Amer. Math. Soc, 24 (1970), 209-214.
  • [15] Z. Stodkowski, W. Wojtyski and J. Zemanek, A note on quasi nilpotentelements of a Banach algebra, Bull. Acad. Polon. Sci., Ser Sci. Math. Astr. Phys., 25 (1977). 131-134.
  • [16] W. Zelazko, A characterizationof multiplicativelinear functionalson complex Banach algebras, Studia Math., 30 (1968), 83-85.