Pacific Journal of Mathematics

Succinct and representational Witt rings.

Jerrold L. Kleinstein and Alex Rosenberg

Article information

Source
Pacific J. Math., Volume 86, Number 1 (1980), 99-137.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102780618

Mathematical Reviews number (MathSciNet)
MR586872

Zentralblatt MATH identifier
0491.13001

Subjects
Primary: 10C05
Secondary: 16A48

Citation

Kleinstein, Jerrold L.; Rosenberg, Alex. Succinct and representational Witt rings. Pacific J. Math. 86 (1980), no. 1, 99--137. https://projecteuclid.org/euclid.pjm/1102780618


Export citation

References

  • [1] R. Baeza, Quadratische Formen iiber semilokalen Ringen, Habilitationschrift, Sa- arbrcken (1975).
  • [2] R. Baeza and M. Knebusch, Annulatorenvon Pfisterformeniiber semilokalen Ringen, Math. Z., 140 (1974), 41-62.
  • [3] E. Becker and L. Brcker, On the descriptionof the reduced Witt ring, J. Algebra, 52 (1978), 328-346.
  • [4] E. Becker and E. Kpping, Reduzierte quadratische Formen undSemiordnungen reeler K'rper, Abh. Math. Sem. Hamburg, 46 (1977), 143-177.
  • [5] T. C. Craven, The Boolean space of orderings of a field, Trans. Amer. Math. Soc, 209 (1975),225-235.
  • [6] R. Elman and T. Y. Lam, Pfister Forms and K-theory of fields, J. Algebra, 23 (1972), 181-213.
  • [7] R. Elman and T. Y. Lam, Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math., 94 (1972), 1155-1194.
  • [8] J. L. Kleinstein and A. Rosenberg,Signatures and semisignaturesof abstractWitt rings and Witt rings of semilocal rings, Canad. J. Math., 30 (1978),872-895.
  • [9] M. Knebusch, Isometrien uber semilokalen Ringen, Math. Z., 108 (1969),255-268.
  • [10] M. Knebusch, Grothendieck-und Wittringe von nichtausgeartetensymmetrischenBili- nearformen, Sitzber. Heidelberg Akad. Wiss., (1969/70),93-157.
  • [11] M. Knebusch, Runde Formen uber semilokalen Ringen, Math. Ann., 193 (1971), 21-34.
  • [12] M. Knebusch,Generalization of a theorem of Artin-Pfister,J. Algebra, 36 (1975), 46-67.
  • [13] M. Knebusch, Remarks on the paper "Equivalent topological propertiesof the space of signatures of a semilocal ring" by A. Rosenberg and R. Ware, Pub. Math., 24 (1977), 181-188.
  • [14] M. Knebusch, A. Rosenberg and R. Ware, Structure of Witt rings and quotients of abelian group rings, Amer. J. Math., 94 (1972),119-155.
  • [15] M. Knebusch,Signatures on semilocal rings, J. Algebra, 26 (1973),208-250.
  • [16] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, Mass., 1973.
  • [17] M. Marshall, Classification of finite spaces of orderings, Canad. J. Math., 31 (1979), 320-330.
  • [18] M. Marshall, Quotients and inverse limits of spaces of orderings,Canad. J. Math., to appear.
  • [19] J. Milnor and D. Husemoller, SymmetricBilinearForms, Ergeb. d. Math. 73, 1973, Springer Verlag, New York-Heidelberg-Berlin.
  • [20] A. Rosenberg and R. Ware, Equivalent topological properties of the space of sign- atures of a semilocal ring, Pub. Math., 23 (1976),283-289.
  • [21] B. L. van der Waerden, Moderne Algebra, vol. 2, 2nd rev. ed., J. Springer, Berlin, 1940.