Pacific Journal of Mathematics

Generalized inverses in regular rings.

Thomas R. Savage

Article information

Source
Pacific J. Math., Volume 87, Number 2 (1980), 455-466.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779975

Mathematical Reviews number (MathSciNet)
MR592745

Zentralblatt MATH identifier
0446.16011

Subjects
Primary: 16A30
Secondary: 16A48

Citation

Savage, Thomas R. Generalized inverses in regular rings. Pacific J. Math. 87 (1980), no. 2, 455--466. https://projecteuclid.org/euclid.pjm/1102779975


Export citation

References

  • [1] R. Arens and I. Kaplansky, Topological representations of algebras, Trans. Amer. Math. Soc, 63 (1948), 457-481.
  • [2] C. W. Bitzer, Inverses in rings with unity,Amer. Math. Monthly, 70 (1963), 315.
  • [3] J. Dyer-Bennet, On finite regular rings, Bull. Amer. Math. Soc, 47 (1941), 784-787.
  • [4] G. Ehrlich, Unit regular rings, Portugal Math., 27 (1968), 209-212.
  • [5] J. Fisher and R. Snider, Rings generated by their units,J. Algebra, 42 (1976), 363-368.
  • [6] R. Hartwig and J. Luh, A note on the group structure of unit regular ring elements, Pacific J. Math., 71 (1977), 449-461.
  • [7] M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math., 24 (1973), 133-141.
  • [8] N. Jacobson, Some remarks on one-sided inverses, Proc. Amer. Math. Soc, 1 (1950), 352-355.
  • [9] N. Jacobson, Structure of Rings, Amer. Math. Coll. Publ. XXXVII, Providence, 1964.
  • [10] I. Kaplansky, Fields and Rings, Univ. of Chicago Press, Chicago, 1972.
  • [11] I. Kaplansky, Topological representations of algebras II, Trans. Amer. Math. Soc, 68 (1950), 62-75.
  • [12] N. McCoy, Theory of Rings, Chelsea Publ. Co., Bronx, 1973.
  • [13] J. von Neumann, On regular rings, Proc. Nat. Acad. Sci., 22 (1936), 707-713.