Pacific Journal of Mathematics

The Radon-Nikodým property, $\sigma $-dentability and martingales in locally convex spaces.

L. Egghe

Article information

Source
Pacific J. Math., Volume 87, Number 2 (1980), 313-322.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779968

Mathematical Reviews number (MathSciNet)
MR592738

Zentralblatt MATH identifier
0435.60005

Subjects
Primary: 46E40: Spaces of vector- and operator-valued functions
Secondary: 46A99: None of the above, but in this section

Citation

Egghe, L. The Radon-Nikodým property, $\sigma $-dentability and martingales in locally convex spaces. Pacific J. Math. 87 (1980), no. 2, 313--322. https://projecteuclid.org/euclid.pjm/1102779968


Export citation

References

  • [1] J. Diestel, Geometry of Banach Spaces, Selected topics, Lecture notes in Mathema- tics, 485, 1975, Springer Verlag,-Berlin.
  • [2] J. Diestel and J. J. Uhl, The Radon-Nikoym-propertyforBanach space valued measures, Rocky Mountain Math. J., 6, 1, (1976), 1-46.
  • [3] N. Dinculeanu, Vector Measures, Pergamon Press, 95, 1967.
  • [4] R. E. Edwards, Functional Analysis, Theory and applications, Holt, Rinehart and Winston, 1965.
  • [5] L. Egghe, On the Radon-property, and related topics in locally convex spaces, Pro- ceedings of the conference on Vector Space Measures-Dublin, 1977.Lecture Notes in mathematics n 645, 77-90, Springer-Verlag, 1978.
  • [6] J. Hagler, A counterexample to several questions about Banach spaces, Studia Mathematca, T. LX (1977), 289-308.
  • [7] R. E. Huff, Dentability and the Radon-Nikodym-property,Duke Math. J., 41 (1974), 111-114.
  • [8] H. Maynard, A geometric characterization of Banach spaces possessing the Radon- Nikody m-property, Trans. Amer. Math. Soc, 185 (1973), 493-500.
  • [9] K. Musiai, The weak Radon-Nikody m-property in Banach spaces, (preprint).
  • [10] E. Saab, Sur la propriete de Radon-Nikodymdans les espaces localement convexes de type (BM), C. R. Acad. Sci. Paris, 283 (1976), 899-902.
  • [11] H. H. Schaefer, Topological vector spaces, Graduate texts in Mathematics, 3 (1971), Springer Verlag,-Berlin.