Pacific Journal of Mathematics

On the stable splitting of $b{\rm o}\wedge b{\rm o}$ and torsion operations in connective $K$-theory.

Gunnar Carlsson

Article information

Source
Pacific J. Math., Volume 87, Number 2 (1980), 283-297.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779966

Mathematical Reviews number (MathSciNet)
MR592736

Zentralblatt MATH identifier
0438.55008

Subjects
Primary: 55N15: $K$-theory [See also 19Lxx] {For algebraic $K$-theory, see 18F25, 19- XX}
Secondary: 55T15: Adams spectral sequences

Citation

Carlsson, Gunnar. On the stable splitting of $b{\rm o}\wedge b{\rm o}$ and torsion operations in connective $K$-theory. Pacific J. Math. 87 (1980), no. 2, 283--297. https://projecteuclid.org/euclid.pjm/1102779966


Export citation

References

  • [1] D. Anderson, Thesis, Berkeley, 1964.
  • [2] D. Anderson, E. Brown and F. P. Petersen, The structureof the spin cobordism ring, Ann. of Math., 86 (1967), 217-298.
  • [3] G. Carlsson, Operations in Connective K-theory and Associated Cohomology Theories, Thesis, Stanford, (1976).
  • [4] R. J. Milgram, The Steenrod algebra and its dual for connective K-theory, Proce- edings of the Northwestern Conference on Homotopy Theory, August, 1974. Ed. D. Davis (published by the Mexican Mathematical Society).
  • [5] J. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67 (1958),.
  • [6] R. Stong, Determination of H*(B0[k,, oo), Z/2) and H*(Bu[k,, ). Z/2), Trans. Amer. Math. Soc, 107 (1963), 526-544.