Pacific Journal of Mathematics

Wirtinger approximations and the knot groups of $F^{n}$ in $S^{n+2}$.

Jonathan Simon

Article information

Source
Pacific J. Math., Volume 90, Number 1 (1980), 177-190.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779127

Mathematical Reviews number (MathSciNet)
MR599329

Zentralblatt MATH identifier
0461.57008

Subjects
Primary: 57M05: Fundamental group, presentations, free differential calculus
Secondary: 57Q45: Knots and links (in high dimensions) {For the low-dimensional case, see 57M25}

Citation

Simon, Jonathan. Wirtinger approximations and the knot groups of $F^{n}$ in $S^{n+2}$. Pacific J. Math. 90 (1980), no. 1, 177--190. https://projecteuclid.org/euclid.pjm/1102779127


Export citation

References

  • [1] R. Bieri, Mayer-Vietoris sequences for HNN-groups and homological duality, Math. Zeit., 143 (1975), 123-130.
  • [2] A. M. Brunner, E. J. Mayland Jr., and J. Simon, Knot groups in S* with nontrivial homology, preprint. (Preliminary report Notices Amer. Math. Soc, 25 (Feb. 1978), Abstract 78T-G34, A-257.
  • [3] H. S. M. Coxeter and W. 0. J. Moser, Generators and Relations for Discrete Groups (2nd ed.), Springer-Verlag, 1965 (Ergebnisse der Math., Band 14).
  • [4] R. H. Fox, A quick trip through knot theory, Topology of S-Manifolds and Related Topics, M. K. Fort, Ed., Prentice-Hall, 1962, 120-167.
  • [5] T. Ganea, Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris, 266 (1968), 556-558.
  • [6] F. Gonzalez-Acua, Homomorphs of knot groups, Ann. Math., 102 (1975), 373-377.
  • [7] D. Johnson, Homomorphs of knot groups, preprint (1978, J. P. L., Pasadena, Cal.).
  • [8] M. Kervaire, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
  • [9] M. Kervaire, On higher dimensionalknots, Differential and Combinatorial Topology, S. S. Cairns, Ed., Princeton Univ. Press, 1965, 105-119.
  • [10] R. Kirby, Problems in low dimensional manifold theory, Algebraic and Geometric Proc. Amer. Math. Soc, Summer Inst. in Topology, Stanford 1976, P.S.P.W., XXXII (1978).
  • [11] T. Maeda, On the groups with Wirtingerpresentations, Math. Seminar Notes, Kwansei Gakuin Univ., Sept. 1977. (also Kobe Univ., 5 (1977), 347-358).
  • [12] J. Stallings, Homology and central series of groups, J. Algebra, 2 (1965), 170-181.
  • [13] S. Suzuki, Knottingproblems of 2-spheres in 4-spheres, Math. Seminar Notes, Kobe Univ., 4 (1976), 241-371.
  • [14] T. Yajima, On a characterization of knot groups of some spheres in R4, Osaka J. Math., 6 (1969), 435-446.
  • [15] T. Yajima, Wirtinger presentations of knot groups, Proc. Japan Acad., 46, No. 9 (1970), 997-1000.