Pacific Journal of Mathematics

Induced $p$-elements in the Schur group.

Richard Anthony Mollin

Article information

Source
Pacific J. Math., Volume 90, Number 1 (1980), 169-176.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779126

Mathematical Reviews number (MathSciNet)
MR599328

Zentralblatt MATH identifier
0445.12009

Subjects
Primary: 16A26
Secondary: 12A80 13A20 20C99: None of the above, but in this section

Citation

Mollin, Richard Anthony. Induced $p$-elements in the Schur group. Pacific J. Math. 90 (1980), no. 1, 169--176. https://projecteuclid.org/euclid.pjm/1102779126


Export citation

References

  • [1] A. A. Albert, Structure of Algebras, Amer. Math. Soc, Providence, R.I., 1961.
  • [2] M. Benard and M. Schacher, The Schur subgroup II, j . Algebra, 22 (1972), 378-385.
  • [3] M. Deuring, Algebren, Springer, Berlin, 1935.
  • [4] L. Goldstein, Analytic Number Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
  • [5] G. L. Janusz, The Schur group of cyclotomic fields, J. Number Theory, 7 (1975), 345-352. 6.1The Schur group of an algebraic number field, Annals of Math., 103 (1976), 253-281.
  • [7] R Mollin, Algebras with uniformly distributed invariants, J. Algebra, 44 (1977), 271-282.
  • [8] R Mollin,Cyclotomic division algebras, (preprint).
  • [9] R Mollin,Generalized uniform distribution of Hasse invariants, Communications in Algebra, 5 (3), (1977), 245-266.
  • [10] R Mollin, Hefstein's conjecture, automorphisms and the Schur group, Communica- tions in Algebra, 6 (3), (1978), 237-248. 11.1Splitting fields and group characters, J. reine angew Math. 315 (1980), 107-119.
  • [12] R Mollin, The Schur group of a field of characteristics zero, Pacific J. Math., 76 (2), (1978), 471-478.
  • [13] R Mollin,Uniform distribution classified, Math. Zeitschrift, 165 (1979), 199-211.
  • [14] R Mollin, Uniform distribution and real fields, J. Algebra, 43 (1976), 155-167.
  • [15] R Mollin,Uniform distribution and the Schur subgroup, J. Algebra, 42 (1976), 261-277.
  • [16] R Mollin, U(K) for a quadratic field, Communications in Algebra, 4 (8), (1976), 747-759.
  • [17] J. W. Pendergrass, The 2-part of the Schur group, J. Algebra, 41 (1976), 422-438.
  • [18] T. Yamada, The Schur Subgroup of the Brauer Group, Lecture Notes in Mathema- tics, No. 397, Springer-Verlag, 1974. 19.1The Schur subgroup of a real cyclotomic field, Math. Zeitschrift, 139 (1974), 35-40.