Pacific Journal of Mathematics

Asymptotic centers and nonexpansive mappings in conjugate Banach spaces.

Teck Cheong Lim

Article information

Source
Pacific J. Math., Volume 90, Number 1 (1980), 135-143.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102779124

Mathematical Reviews number (MathSciNet)
MR599326

Zentralblatt MATH identifier
0454.47046

Subjects
Primary: 47H09: Contraction-type mappings, nonexpansive mappings, A-proper mappings, etc.
Secondary: 46B99: None of the above, but in this section 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30]

Citation

Lim, Teck Cheong. Asymptotic centers and nonexpansive mappings in conjugate Banach spaces. Pacific J. Math. 90 (1980), no. 1, 135--143. https://projecteuclid.org/euclid.pjm/1102779124


Export citation

References

  • [1] F. E. Browder, Nonexpansive nonlinear operators in a Banack space, Proc Nat. Acad. U. S. A., 54 (1965), 1041-1044,
  • [2] F. E. Browder, Nonlinear functional analysis, Proc. Symp. Pure Math. vol. XVIII, Part 2, A. M.S., 1976.
  • [3] M.S. Brodskii andD.P. Miman, On the center of a convex set, Doklady Alad. Nauk SSSR (N.S.), 59 (1948), 837-840.
  • [4] W. L. Bynum, A class of spaces lacking normal structure, Compositio Math., 25 (1972), 233-236.
  • [5] A. H. Clifford and G. B. Preston, The algebraitheory of semigroups. Vol. I, Math. Survey, no.7. Amer. Math. Soc,Providence, R. I., 1961.
  • [6] D.Godhe, Zumprinzip der Kontraktiven Abbildung, Math. Nachr., 30 (1965), 251-258-
  • [7] J. -P.Gossez andE. Lami Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math., 40 (1972), 565-573.
  • [8] R.D.Holmes andA. T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc, (2) 5 (1972), 330-336.
  • [9] L. A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc,55(1976), 321- 325.
  • [10] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004-1006.
  • [11] T. C. Lim,A fixed point theorem for families of nonexpansive mappings, Pacific J. Math., 53 (1974), 487-493.
  • [12] T. C. Lim, Characterization of normal structure, Proc. Amer. Math. Soc,43 (1974), 313-310.
  • [13] R. Schoneberg, Private communication.