Pacific Journal of Mathematics

Completions of Noetherian hereditary prime rings.

V. K. Deshpande

Article information

Source
Pacific J. Math., Volume 90, Number 2 (1980), 285-297.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102778988

Mathematical Reviews number (MathSciNet)
MR600631

Zentralblatt MATH identifier
0455.16001

Subjects
Primary: 16A12
Secondary: 16A14

Citation

Deshpande, V. K. Completions of Noetherian hereditary prime rings. Pacific J. Math. 90 (1980), no. 2, 285--297. https://projecteuclid.org/euclid.pjm/1102778988


Export citation

References

  • [1] E. H. Batho, Non-commutative semi-local rings, Duke Math. J., 24 (1957), 163-172.
  • [2] A.W. Chatters, The restricted minimum condition in Noetherian hereditary rings, J. London Math. Soc, (2), 4 (1971), 83-87.
  • [3] A.W. Chatters, A decomposition theorem for Noetherian hereditary rings, Bull. London Math. Soc, 4 (1972), 125-126.
  • [4] D. Eisenbud and J. C. Robson, Hereditary Noetherian prime rings, J. Algebra, 16
  • [5] C. Faith, Modules finite over endomorphism ring, Lectures on rings and Modules, 246 Springer-Verlag, (1972), 145-189.
  • [6] W D. Gwynne and J. C. Robson, Completions of non-commutative Dedekind prime rings, J. London Math. Soc, (2), 4 (1971), 346-352.
  • [7] Y. Hinohara, Note on non-commutative semi-local rings, Nagoya Math. J., 17 (1960), 161-166.
  • [8] G. Ivanov, Decomposition of modules over serial rings, Comm. in Algebra, 3 (11) (1975), 1031-1036.
  • [9] A. V. Jategaonkar,Injective modules and localization in non-commutative Noetherian rings, Trans. Amer. Math. Soc, 190 (1974), 109-123.
  • [10] A. V. Jategaonkar, Certain injectives are rtinian, Lecture notes in Math., 545, Springer- Verlag (1976), 128-139.
  • [11] J. Kuzmanovich, Completions of Dedekind prime rings as second endomorphism rings, Pacific J. Math., 36 (1971), 721-729.
  • [12] J. C. McConnell, The Noetherian property in complete rings and modules, J. Algebra, 12 (1969), 143-153.
  • [13] G. Michler, Structure of semi-perfert hereditary Noetherian ringd, J. Algebra, 13 (1969), 327-344.
  • [14] R. W. Miller and D.R. Turnidge, Factors of co-finitely generated injective modules, Comm. in Algebra, 4 (3), (1976), 233-243.
  • [15] B. J. Muller, Localization in non-commutative Noetherian rings, Canad. J. Math., 28 (1976), 600-610.
  • [16] F. L Sandomierski, Linearly compct modules and local Morita duality, Ring Theory (Ed., R. Gordon), Academic Press (1972), 333-346.
  • [17] D.W. Sharpe and P. Vamos, Injective Modules, Camb. Univ. Press, 1972.
  • [18] S. Singh, Quasi-injective and quasi-projective modules over HNP-rings, Canad. J. Math., 26 (1974), 1133-1185.
  • [19] P. Vamos, Semi-local Noetherian Pi-rings, Bull. London Math. Soc, 9 (1977), 251-256.
  • [20] R. B. Warfield, Jr., Serial rings and finitely presented modules, J. Algebra, 37 (1975), 187-222.
  • [21] O. Zariski and P. Samuel, Commutative Algebra I, Van Nostrand, 1962.