Pacific Journal of Mathematics

Borel selectors for separated quotients.

Douglas E. Miller

Article information

Source
Pacific J. Math., Volume 91, Number 1 (1980), 187-198.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102778865

Mathematical Reviews number (MathSciNet)
MR612898

Zentralblatt MATH identifier
0477.54008

Subjects
Primary: 54C65: Selections [See also 28B20]
Secondary: 54H15: Transformation groups and semigroups [See also 20M20, 22-XX, 57Sxx]

Citation

Miller, Douglas E. Borel selectors for separated quotients. Pacific J. Math. 91 (1980), no. 1, 187--198. https://projecteuclid.org/euclid.pjm/1102778865


Export citation

References

  • [1] J. P.Burgess, A selection theorem for group actions, Pacific J. Math., 80 (1979), 333-336.
  • [2] E.Effros, Transformation groups and C-algebras,Ann. Math., 81 (1965), 39-55.
  • [3] R. Kallrnan and R.D. Mauldin, A cross-sectiontheorem andan application to C*- algebras, AMSProceedings, 61 (1978), 57-61.
  • [4] K. Kuratowski, Topology, vol. 1, Academic Press, New York, 1966.
  • [5] K. Kuratowski and A. Maitra, Some theorems onselectors andtheir applications to semicontinuous decompositions, Bull. Acad. Polon. Sci.Ser.Sci. Math. Astron. Phys., 22 (1974), 887-891.
  • [6] K. Kuratowski and C.Ryll-Nardzewski, A general theorem onselectors, Bui. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 13 (1965), 397-403.
  • [7] D.E.Miller, Onthemeasurability of orbits in Borel actions, AMSProc, 63 (1977), 165-170.
  • [8] D.E.Miller, A selector for equivalence relations with Ggorbits, AMS Proc, toappear.
  • [9] D.E.Miller, Review of V. Harnik, "Approximation theorems and model theoretic for- cing" in Math. Reviews, 55 (1978). 1Theauthor is grateful toJohn Burgess forthis remark.
  • [10] S. M. Srivastava, Selection theorems for G valued multifunctions,Trans. Amer. Math. Soc, 254 (1979), 283-293.
  • [11] R. L. Vaught, Invariant sets in topology and logic, Fund. Math., 82 (1974/5), 269-294.