Pacific Journal of Mathematics

On determining regular behavior from the recurrence formula for orthogonal polynomials.

Daniel P. Maki

Article information

Source
Pacific J. Math., Volume 91, Number 1 (1980), 173-178.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102778863

Mathematical Reviews number (MathSciNet)
MR612896

Zentralblatt MATH identifier
0469.42004

Subjects
Primary: 42C05: Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45]

Citation

Maki, Daniel P. On determining regular behavior from the recurrence formula for orthogonal polynomials. Pacific J. Math. 91 (1980), no. 1, 173--178. https://projecteuclid.org/euclid.pjm/1102778863


Export citation

References

  • [1] T. S. Chihara, Orthogonal polynomials whose zeros are dense in intervals, J. Math. Anal, and App., 24, No. 2 (1968), 362-371.
  • [2] T. S. Chihara, Chain sequences and orthogonal polynominals, Trans. Amer. Math. Soc, 104, No. 1 (1962), 1-16.
  • [3] P. Erds and G. Freud, On orthogonal polynomials with regularly distributed zeros, Proc. London Math. Soc. (3), 29 (1974), 521-537.
  • [4] P. Erds and P. Turan, On interpolation III, Ann. of Math., 41 (1940), 510-555.
  • [5] P. Nevai, Memoir of A.M.S. #213, American Mathematical Society, 1979.
  • [6] G.Szego, Orthogonal polynomials, Coll. Pub.23 (Amer. Math. Soc),New York, 1939.
  • [7] J. Schohat and J. Tamarkin, The problem of moments, Math. Sur. No. 1, Amer. Math. Soc, New York, 1943.
  • [8] J. L. Ullman, On the regular behavior of orthogonal polynomials, Proc London Math. Soc (3) 24 (1972), 119-148.
  • [9] H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948.