Pacific Journal of Mathematics

On cellular decompositions of Hilbert cube manifolds.

Zvonko Čerin

Article information

Source
Pacific J. Math., Volume 91, Number 1 (1980), 47-69.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102778855

Mathematical Reviews number (MathSciNet)
MR612888

Zentralblatt MATH identifier
0526.57011

Subjects
Primary: 57N20: Topology of infinite-dimensional manifolds [See also 58Bxx]

Citation

Čerin, Zvonko. On cellular decompositions of Hilbert cube manifolds. Pacific J. Math. 91 (1980), no. 1, 47--69. https://projecteuclid.org/euclid.pjm/1102778855


Export citation

References

  • [1] S. Armentrout, Upper semi-continuous decompositions of Ez with at most countably many non-degenerate elements, Ann. of Math., 78 (1963), 605-618.
  • [2] S. Armentrout, L. L. Lininger and D. V. Meyer, Equivalent decompositions of R3, Pacific J. Math., 24 (1968), 205-227.
  • [3] K. Borsuk, Theory of retracts, Monografie Matematyczne 44, Warsaw, 1969.
  • [4] K. Borsuk, Theory of shape, Monografie Matematyczne 59, Warsaw, 1975.
  • [5] W Browder, J. Levine and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math., 87 (1965), 1017-1028.
  • [6] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc, 66 (1960), 74-76.
  • [7] Z Cerin, n-docility at infinity and compactifications of LCn spaces, Glasnik Mat., 12 (1977), 161-174.
  • [8] Z Cerin, Hubert cube modulo an arc, Fund. Math., 101 (1978), 19-27.
  • [9] Z Cerin, Homotopy at infinity of proper maps, Glasnik Mat., 13 (1978), 135-154.
  • [10] Z Cerin, ^y-movable at infinity spaces, compact ANR divisors and property UVWn, Publ. Inst. Math., 23 (1978), 53-65.
  • [11] Z Cerin, Homotopy properties of locally compact spaces at infinity-triviality and mov- ability, Glasnik Mat., 13 (1978), 347-370.
  • [12] T. A. Chapman, Lectures on Hilbert cube manifolds, Regional conference series in mathematics no. 28, Amer. Math. Soc, 1976.
  • [13] T. A. Chapman and L. C. Siebenmann, Finding a boundary for a Hilbert cube mani- fold, Acta Math., 137 (1976), 171-208.
  • [14] C. O. Christenson and R. P. Osborne, Pointlike subsets of a manifold, Pacific J. Math., 24 (1968), 431-435.
  • [15] D. W Curtis and R. M. Schori, 2X and C(X) are homeomorphic to the Hubert cube, Bull. Amer. Math. Soc, 80 (1974), 927-931.
  • [16] D. W Curtis and R. M. Schori, Hyperspaces which characterize simple homotopy type, General Top. and Appl., 6 (1976), 153-165-
  • [17] R. J. Daverman, A non-shrink able decomposition of Sn determined by a null sequence of cellular sets, Proc Amer. Math. Soc, 75 (1979), 171-176.
  • [18] D. G. DeGryse and R. P. Osborne, A wild Cantor set in En with simply connected complement, Fund. Math., 86 (1974), 9-27.
  • [19] J. Dydak, The Whitehead and Smale theorems in shape theory, Dissertationes Mathematicae, 156 (1978) 1-55.
  • [20] S. Ferry, Completions of Q-manifolds which are Q-manifolds, (preprint).
  • [21] M. F. Fort, Jr. (editor), Topology of ^-Manifolds, Prentice-Hall, 1962.
  • [22] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965.
  • [23] D. M. Hyman, ANR divisors and absolute neighborhood contractibility, Fund. Math., 62 (1968), 61-73.
  • [24] O. H. Keller, Die Homeomorphie der kompakten Mangen in HilbertschenRaum, Math. Ann., 105 (1931), 748-758.
  • [25] G. Kozlowski, Images of ANRs, (preprint).
  • [26] N. S. Kroonenberg, Characterization of finite-dimensional Z-sets, Proc Amer. Math. Soc, 43 (1974), 421-427.
  • [27] R. C. Lacher, Cell-like mappings II, Pacific J. Math., 35 (1970), 649-660.
  • [28] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc, 83 (1977), 495-552.
  • [29] R. C. Lacher, A cellularity criterion based on codimension, Glasnik Mat., 11 (1976), 135-140.
  • [30] J. W. Lamoreaux, Decomposition of metric spaces with a ^-dimensional set of non- degenerate elements, Canad. J. Math., 21 (1969), 202-216.
  • [31] S. Mardesic and S. Ungar, The relative Hurewicz theorem in shape theory, Glasnik Mat., 9 (1974), 317-327.
  • [32] D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math., 79 (1964), 327-337.
  • [33] D. V. Meyer, A decomposition of Ez into points and a null family of tame 3-cellsis E\Ann. of Math., 78 (1963), 600-604.
  • [34] D. V. Meyer,Ez modulo a 3-cell, Pacific J. Math., 13 (1963), 193-196.
  • [35] S. Nowak, On the fundamental dimension of approximatiely 1-connectedcompacta, Fund. Math., 89 (1975), 61-79. 36-T. M. Price, A necessary condition that a cellular upper semi-continuousdecomposi- tion of En yield En, Trans. Amer. Math. Soc, 122 (1966), 427-435.
  • [37] R. B. Sher, Docility at infinity and compactifications of ANR's, Trans. Amer. Math. Soc, 221 (1976), 213-224.
  • [38] L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Doctoral dissertation, Princeton Univ., 1965.
  • [39] L. C. Siebenmann, Infinite simple homotopy types, Indag. Math., 32 (1970), 479-495-
  • [40] H. Toruczyk, On CE-images of the Hilbert cube and characterization of Q-mani- folds, (prtprint).
  • [41] W. L. Voxman, On the shrinkabiiity of decompositions of Zmanifolds, Trans. Amer. Math. Soc, 150 (1970), 27-39.
  • [42] J. E. West, Mapping Hilbert cube manifold to ANRs, Ann. of Math., 106 (1977),
  • [43] R. Y. T. Wong, Extending homeomorphisms by means of collarings, Proc. Amer. Math. Soc, 19 (1968), 1443-1447.
  • [44] R. Y. T. Wong,A wild Cantor set in the Hilber cube, Pacific. J. Math., 24 (1968),189-193.