Pacific Journal of Mathematics

An application of groupoid cohomology.

Caroline Series

Article information

Source
Pacific J. Math., Volume 92, Number 2 (1981), 415-432.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102736802

Mathematical Reviews number (MathSciNet)
MR618075

Zentralblatt MATH identifier
0471.28016

Subjects
Primary: 22D40: Ergodic theory on groups [See also 28Dxx]
Secondary: 20L15 46L05: General theory of $C^*$-algebras 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx]

Citation

Series, Caroline. An application of groupoid cohomology. Pacific J. Math. 92 (1981), no. 2, 415--432. https://projecteuclid.org/euclid.pjm/1102736802


Export citation

References

  • [1] S. Banach, Theorie des operations linearies, Monografie Mat., PWN, Warsaw, 1932; reprint, Chelsea, New York, 1955.
  • [2] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc, 234 (1977), 289-324.
  • [3] J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Advances in Math., 28 (1978), 186-230.
  • [4] G. W. Mackey, Ergodic theory and virtualgroups, Math. Annalen, 166 (1966), 187-207.
  • [5] S. MacLane, Homology, Berlin, Springer, 1963.
  • [6] C. C. Moore, Group extensions and cohomology forlocally compact groups III, Trans. Amer. Math. Soc, 221 (1976), 1-33.
  • [7] A. Ramsay, Virtual groups and group actions, Adv. Math., 6 (1971), 253-332.
  • [8] A. Ramsay, Boolean duals of virtual groups, J. Functional Analysis, 15 (1974), 56-101.
  • [9] A. Ramsay, Subobjects of Virtual groups.Unpublished.
  • [10] A. Ramsay, Non-transitivequasi-orbits in Mackey''s analysisof groupextensions, Acta. Math., 137 (1976), 17-48.
  • [11] K. Schmidt, Lectures on cocycles of ergodic transformationgroups, 1976, Mathe- matics Institute, University of Warwick, Coventry.
  • [12] J. Westman, Cohomology for the ergodic actions of countable groups, Proc. Amer. Math. Soc, 30 (1970), 318-320.